[1] 徐小俊, 方佳. 大数据背景下农业科技平台发展的困境及对策[J]. 福建农业科技, 2015, 46(6): 76-80. [2] 赵瑞雪, 李娇, 张洁,等. 多场景农业专业知识服务系统构建研究[J]. 农业图书情报学报, 2020, 32(1): 4-11. [3] 张向君, 陈优良, 肖钢. 基于机器学习的农作物产量预测研究综述[J]. 安徽农学通报, 2021, 27(3): 117-119,134. [4] KHAKI S, WANG L.Crop yield prediction using deep neural networks[J]. Frontiers in plant science, 2019, 10: 621. [5] JIANG H.A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US corn belt at the county level[J]. Global chang biology, 2020, 26: 1754-1766. [6] MUPANGWA W, CHIPINDU L, NYAGUMBO I, et al.Evaluating machine learning algorithms for predicting maize yield under conservation agriculture in Eastern and Southern Africa[J]. SN applied sciences, 2020, 2: 952. [7] ZHENG C, JIONG Y.An end-to-end model for rice yield prediction using deep learning fusion[J]. Computers and electronics in agriculture, 2020, 174: 105471. [8] PATEL J, VALA B, SAIYAD M.LSTM-RNN combined approach for crop yield prediction on climatic constraints[A].2021 5th international conference on computing methodologies and communication (ICCMC)[C]. Rome, Italy: IEEE, 2021. [9] RUBEN F,TINA B,JIAN K,et al.Rice-Yield prediction with multi-temporal sentinel-2 data and 3D CNN: A case study in Nepal[J]. Remote sensing, 2021, 13(7): 1391. [10] SHI T Z, LEI X, NENG C C.Rice yield prediction in Hubei Province based on deep learning and the effect of spatial heterogeneity[J]. Remote sensing, 2023, 15(5): 1361. [11] USHARANI B, GOPI B, NALINI C.Improved optimization algorithm in LSTM to predict crop yield[J]. Computers,2023, 12(1): 10. [12] 臧海祥,张越, 程礼临,等. 基于ICEEMDAN-LSTM和残差注意力的短期太阳辐照度预测[J]. 太阳能学报, 2023, 44(12): 175-181. [13] 王登海, 安玥馨, 廖晨博,等. 基于CNN-LSTM混合神经网络的光伏发电量预测方法研究[J]. 西安石油大学学报(自然科学版), 2024, 39(1): 129-134. [14] ABID N, SALEEM U, AHMAD Z S, et al.Estimation and forecasting of rice yield using phenology-based algorithm and linear regression model on sentinel- Ⅱ satellite data[J]. Agriculture, 2021, 11(10): 1026. [15] JIYA E A, ILLIYASU U, AKINYEMI M.Rice yield forecasting: A comparative analysis of multiple machine learning algorithms[J]. Journal of information systems and informatics, 2023, 5(2): 785-799. [16] SATPATHI A, SETIYA P, DAS B, et al.Comparative analysis of statistical and machine learning techniques for rice yield forecasting for Chhattisgarh, India[J]. Sustainability, 2023, 15(3): 2786. [17] HAO M M, YING Z, YI F L, et al.Prediction of rice yield based on LSTM long short term memory network[J]. Journal of physics: Conference series, 2021, 1952(4): 42033. |