[1] 马战林,文枫,周颖杰,等.基于作物生长模型与机器学习算法的区域冬小麦估产[J].农业机械学报,2023,54(6):136-147. [2] 李远斌,卜祥峰,丁云鸿,等.小麦产量预测模型综述[J].智慧农业导刊,2023, 3(5): 13-19. [3] ASSENG S,ZHU Y,BASSO B,et al.Simulation modeling:Applications in cropping systems[J].Advances in agronomy,2014,99:112-134. [4] BASSO B, LIU L.Seasonal crop yield forecast: Methods, applications, and accuracies[J]. Advances in agronomy, 2019, 154: 201-255. [5] AHMED M, AKRAM M N, ASIM M, et al.Calibration and validation of APSIM-wheat and CERES-wheat for spring wheat under rainfed conditions: Models evaluation and application[J]. Computers and electronics in agriculture, 2016, 123: 384-401. [6] DUMONT B, BASSO B, LEEMANS V, et al.A comparison of within-season yield prediction algorithms based on crop model behaviour analysis[J]. Agricultural and forest meteorology, 2015, 204: 10-21. [7] 甘甜,李雷,李红叶,等. 基于多源遥感数据和机器学习算法的冬小麦产量预测研究[J]. 麦类作物学报, 2022, 42(11): 1419-1428. [8] 姜德阳. 基于作物生长模型和光能利用率模型耦合的玉米估产方法研究[D].长春:吉林大学,2023. [9] 秦格霞. 基于作物生长模型和机器学习算法的草地地上生物量和叶面积指数的反演研究[D].兰州:甘肃农业大学,2022. [10] 王萌萌,杨学斌,王吉顺,等. WOFOST模型在德州市的适用性研究[J]. 湖北农业科学, 2022, 61(5): 160-164. [11] 潘学标. 荷兰作物模型的发展与应用[J].世界农业,1998(9): 17-19. [12] 谢文霞,王光火,张奇春.WOFOST模型的发展及应用[J]. 土壤通报, 2006(1): 154-158. [13] 杨妍辰,王建林,宋迎波. WOFOST作物模型机理及使用介绍[J].气象科技进展, 2013, 3(5): 29-35. [14] 陈思宁,赵艳霞,申双和,等.基于PyWOFOST作物模型的东北玉米估产及精度评估[J].中国农业科学, 2013,46(14): 2880-2893. [15] 许婕. 融合SVR和K-means聚类算法的智慧农业大棚智能灌溉研究[J].自动化与仪器仪表, 2023(11): 108-112. [16] 岳攀,林威伟,吴斌平,等. 基于ACGWO-SVR的高寒地区心墙堆石坝压实质量评价模型[J].水利水电技术(中英文), 2021, 52(11): 98-107. [17] MENDES-MOREIRA J, SOARES C, JORGE A M, et al.Ensemble approaches for regression: A survey[J]. ACM computing surveys, 2012, 45(1): 1-40. [18] 董乐红,耿国华,高原. Boosting算法综述[J]. 计算机应用与软件, 2006(8): 27-29. [19] BREIMAN L.Bagging predictors[J]. Machine learning, 1996, 24(2): 123-140. [20] 常爽爽,赵栩锋,刘震宇,等. 基于异构多核的多类型DAG任务的响应时间分析[J].计算机学报, 2020, 43(6): 1052-1068. [21] HO-KIN K.The random subspace method for constructing decision forests[J]. IEEE transactions on pattern analysis and machine intelligence, 1998, 20(8): 832-844. [22] WOLPERT D H.Stacked generalization[J]. Neural networks, 1992, 5(2): 241-259. [23] 王海深. 基于软投票的半监督聚类集成研究[D].成都:西南交通大学, 2014. [24] 刘贺,郭黎,李豪,等.面实体匹配的集成学习CatBoost方法[J].地球信息科学学报,2022,24(11): 2198-2211. |