HUBEI AGRICULTURAL SCIENCES ›› 2025, Vol. 64 ›› Issue (9): 56-65.doi: 10.14088/j.cnki.issn0439-8114.2025.09.010
• Resource & Environment • Previous Articles Next Articles
ZHOU Yi-kai1, YAO Yi-cai1, GAO Yuan2, ZHANG Jing-yu3, ZHANG Bin3, MAN Zhen-tuan3, WANG Ming-dao1, CUI Guang-zhou3
Received:2025-03-27
Online:2025-09-25
Published:2025-10-28
CLC Number:
ZHOU Yi-kai, YAO Yi-cai, GAO Yuan, ZHANG Jing-yu, ZHANG Bin, MAN Zhen-tuan, WANG Ming-dao, CUI Guang-zhou. Plant growth-promoting microorganisms:From growth promoting mechanism to green agriculture[J]. HUBEI AGRICULTURAL SCIENCES, 2025, 64(9): 56-65.
| [1] | 周静. 农民合作社推动农户化肥减量使用的效果研究[J].西北农林科技大学学报(社会科学版),2023,23(5):116-128. |
| [2] | 余志胜. 农田土壤化肥污染及对策[J].农业开发与装备,2022(9):144-145. |
| [3] | 高洪娥,刘树宝,敖淑楠,等.土壤污染成因及防治策略研究[J].农业工程与装备,2023,50(4):11-13. |
| [4] | ABHILASH P C, DUBEY R K, TRIPATHI V, et al.Plant growth-promoting microorganisms for environmental sustainability[J]. Trends in biotechnology, 2016, 34(11): 847-850. |
| [5] | WANG Z, LU K H, LIU X, et al.Comparative functional genome analysis reveals the habitat adaptation and biocontrol characteristics of plant growth-promoting bacteria in NCBI databases[J]. Microbiology spectrum, 2023, 11(3): e0500722. |
| [6] | SINGH D P,SINGH H B,PRABHA R.Plant-microbe interactions in agro-ecological perspectives: Volume 2: Microbial interactions and agro-ecological impacts[M]. 2017. 135-191. |
| [7] | HOU Q H, WANG C Q, HOU X Y, et al.Draft genome sequence of Brevibacillus brevis DZQ7, a plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity[J]. Genome announcements, 2015, 3(4): e00831-15. |
| [8] | DING H X, NIU B, FAN H Y, et al.Draft genome sequence of Bacillus cereus 905, a plant growth-promoting rhizobacterium of wheat[J]. Genome announcements, 2016, 4(3): e00489-16. |
| [9] | GUPTA M, CHAUHAN P S, SOPORY S K, et al.Draft genome sequence of a potential plant growth-promoting rhizobacterium, Pseudomonas sp. strain CK-NBRI-02[J]. Microbiology resource announcements, 2019, 8(43): e01113-19. |
| [10] | JIANG Q Y, XIAO J, ZHOU C H, et al.Complete genome sequence of the plant growth-promoting rhizobacterium Pseudomonas aurantiaca strain JD37[J]. Journal of biotechnology, 2014, 192: 85-86. |
| [11] | BERGOTTINI V M, FILIPPIDOU S, JUNIER T, et al.Genome sequence of kosakonia radicincitans strain YD4, a plant growth-promoting rhizobacterium isolated from yerba mate (Ilex paraguariensis St. hill.)[J]. Genome announcements,2015,3(2): e00239-15. |
| [12] | JANA G A, YAISH M W.Isolation and functional characterization of a mVOC producing plant-growth-promoting bacterium isolated from the date palm rhizosphere[J]. Rhizosphere,2020,16: 100267. |
| [13] | LIANG S X, JIN D C, WANG X X, et al.Draft genome sequence of Paenibacillus polymyxa EBL06, a plant growth-promoting bacterium isolated from wheat phyllosphere[J]. Genome announcements, 2015, 3(3): e00414-15. |
| [14] | SCHREINER M, KRUMBEIN A, RUPPEL S.Interaction between plants and bacteria: Glucosinolates and phyllospheric colonization of cruciferous vegetables by Enterobacter radicincitans DSM 16656[J]. Journal of molecular microbiology and biotechnology, 2009, 17(3): 124-135. |
| [15] | HERPELL J B, ALICKOVIC A, DIALLO B, et al.Phyllosphere symbiont promotes plant growth through ACC deaminase production[J]. The ISME journal, 2023, 17(8): 1267-1277. |
| [16] | SUN Z X, HSIANG T, ZHOU Y, et al.Draft genome sequence of Bacillus amyloliquefaciens XK-4-1, a plant growth-promoting endophyte with antifungal activity[J]. Genome announcements, 2015, 3(6): e01306-15. |
| [17] | WITZEL K, GWINN-GIGLIO M, NADENDLA S, et al.Genome sequence of Enterobacter radicincitans DSM16656(T), a plant growth-promoting endophyte[J]. Journal of bacteriology, 2012, 194(19): 5469. |
| [18] | PHAM V T K, REDIERS H, GHEQUIRE M G K, et al. The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15[J]. Archives of microbiology, 2017, 199(3): 513-517. |
| [19] | 冶赓康,俄胜哲,陈政宇,等.土壤中磷的存在形态及分级方法研究进展[J].中国农学通报,2023,39(1):96-102. |
| [20] | 雷吉琳,李乃荟,陈硕,等.芽孢杆菌活化土壤残留磷的机制及影响因素[J].磷肥与复肥,2022,37(2):16-22. |
| [21] | OLEŃSKA E, MAŁEK W, WÓJCIK M, et al. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review[J]. Science of the total environment, 2020, 743: 140682. |
| [22] | 马莹,程莹莹,石孝均,等.溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用[J].微生物学报,2023,63(12):4502-4521. |
| [23] | 乔志伟,刘超,王红.一株硝基还原假单胞菌的溶磷特性及对碳循环相关基因的影响[J].江苏农业学报,2023,39(5):1151-1158. |
| [24] | 李青青,张芮,高彦婷,等.耐盐碱解磷菌的溶磷效果及其对黄豆萌发的影响[J].微生物学通报,2024,51(11):4574-4589. |
| [25] | 卫星,徐鲁荣,张丹,等.一株耐硝酸盐的巨大芽孢杆菌溶磷特性研究[J].环境科学学报,2015,35(7):2052-2058. |
| [26] | 任丽丽,李玉玺,陈阳.硅酸盐细菌解钾作用研究进展[J].实验科学与技术,2015,13(2):209-211. |
| [27] | ETESAMI H, EMAMI S, ALIKHANI H A.Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects-A review[J]. Journal of soil science and plant nutrition, 2017, 17(4): 897-911. |
| [28] | CHEN Y F, YE J R, KONG Q Q.Potassium-solubilizing activity of Bacillus aryabhattai SK1-7 and its growth-promoting effect on Populus alba L.[J]. Forests, 2020, 11(12): 1348. |
| [29] | ZHANG C S, KONG F Y.Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants[J]. Applied soil ecology,2014,82:18-25. |
| [30] | 乔凯,沈彦汐,廖宗文,等.活化钾长石中解钾菌的抗光亏缺效果研究初报[J].中国土壤与肥料,2023(7):208-212. |
| [31] | 董子阳,胡佳杰,胡宝兰.微生物铁载体转运调控机制及其在环境污染修复中的应用[J].生物工程学报,2019,35(11):2189-2200. |
| [32] | SAHA M, SARKAR S, SARKAR B, et al.Microbial siderophores and their potential applications: A review[J]. Environmental science and pollution research international, 2016, 23(5): 3984-3999. |
| [33] | TIMOFEEVA A M, GALYAMOVA M R, SEDYKH S E.Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture[J]. Plants, 2022, 11(22): 3065. |
| [34] | 闵莉静,郭璐,叶建仁.基于嗜铁素介导的吡咯伯克霍尔德氏菌JK-SH007促生作用机制研究[J].南京林业大学学报(自然科学版),2019,43(6):165-172. |
| [35] | RIZZI A, ROY S, BELLENGER J P, et al.Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation[J]. Applied and environmental microbiology, 2019, 85(3): e02439-18. |
| [36] | 徐鹏霞,韩丽丽,贺纪正,等.非共生生物固氮微生物分子生态学研究进展[J].应用生态学报,2017,28(10):3440-3450. |
| [37] | 王玉虎,赵明敏,郑红丽.植物内生固氮菌及其固氮机理研究进展[J].生物技术进展,2022,12(1):17-26. |
| [38] | 张婷,张玲,张莹莹,等.植物促生菌在农作物上的应用进展[J].河北农业科学,2022,26(3):33-37. |
| [39] | 刘彩霞. 杉木幼林土壤微生物对氮沉降的响应及固氮菌株的研究[D].北京:中国林业科学研究院,2017. |
| [40] | 李笑淳,宋凯,陈博,等.植物根际促生菌:作用机制与未来[J].激光生物学报,2024,33(3):193-200. |
| [41] | TIWARI S, PRASAD V, CHAUHAN P S, et al.Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice[J]. Frontiers in plant science, 2017, 8: 1510. |
| [42] | 刘博,王旺田,马骊,等.白菜型油菜IPT基因家族鉴定及表达分析[J].中国农业科技导报,2024,26(2):56-66. |
| [43] | WEI X, MORENO-HAGELSIEB G, GLICK B R, et al.Comparative analysis of adenylate isopentenyl transferase genes in plant growth-promoting bacteria and plant pathogenic bacteria[J]. Heliyon, 2023, 9(3): e13955. |
| [44] | NARAYANAN Z, GLICK B R.Secondary metabolites produced by plant growth-promoting bacterial endophytes[J]. Microorganisms, 2022, 10(10): 2008. |
| [45] | KOZA N A, ADEDAYO A A, BABALOLA O O, et al.Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion[J]. Microorganisms, 2022, 10(8): 1528. |
| [46] | 翁杰,刘颖,章唐桀,等.广西红树林放线菌Streptomyces sporoverrucosus 33510次级代谢产物研究[J/OL].广西植物,1-10[2024-08-08].https://link.cnki.net/urlid/45.1134.Q.202407 29.1849.017. |
| [47] | 邓陈洁,郭晓为,黄胜雄,等.链霉菌Kib015次级代谢产物及其抗菌活性研究[J].生物化工,2023(2):22-27. |
| [48] | WEISSKOPF L, SCHULZ S, GARBEVA P.Microbial volatile organic compounds in intra-Kingdom and inter-Kingdom interactions[J]. Nature reviews microbiology, 2021, 19(6): 391-404. |
| [49] | 高亚慧,姜明国,丰景,等.产生促生挥发性物质的潜在PGPR菌株筛选及其促生特性研究[J].生物技术通报,2022,38(3):103-112. |
| [50] | ALMEIDA O A C, DE ARAUJO N O, MULATO A T N, et al. Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice[J]. Frontiers in plant science,2023,13: 1056082. |
| [51] | SUN X L, XU Z H, XIE J Y, et al.Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. The ISME journal, 2022, 16(3): 774-787. |
| [52] | FENG Z W, LIANG Q H, YAO Q, et al.The role of the rhizobiome recruited by root exudates in plant disease resistance: Current status and future directions[J]. Environmental microbiome, 2024,19(1): 91. |
| [53] | RUDRAPPA T, CZYMMEK K J, PARÉ P W, et al.Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant physiology, 2008, 148(3): 1547-1556. |
| [54] | LI H,LA S K,ZHANG X,et al.Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress[J]. The ISME journal,2021,15(10):2865-2882. |
| [55] | WANG X J, FANG J N, LI L, et al.Gongronella sp. w5 hydrolyzes plant sucrose and releases fructose to recruit phosphate-solubilizing bacteria to provide plants with phosphorus[J]. Applied and environmental microbiology, 2024, 90(7): e0053424. |
| [56] | HE J D, ZHANG L, VAN DINGENEN J, et al. Arbuscular mycorrhizal hyphae facilitate rhizobia dispersal and nodulation in legumes[J]. The ISME journal, 2024, 18(1): wrae185. |
| [57] | CHEN S Y, SUN Y, WEI Y F, et al.Different rhizosphere soil microbes are recruited by tomatoes with different fruit color phenotypes[J]. BMC microbiology, 2022, 22(1): 210. |
| [58] | GROßKOPF T, SOYER O S. Synthetic microbial communities[J]. Current opinion in microbiology, 2014, 18: 72-77. |
| [59] | YANG N, RØDER H L, WICAKSONO W A, et al. Interspecific interactions facilitate keystone species in a multispecies biofilm that promotes plant growth[J]. The ISME journal, 2024, 18(1): wrae012. |
| [60] | LI P F, DINI-ANDREOTE F, JIANG J D.Exploiting microbial competition to promote plant health[J]. Trends in plant science, 2024, 29(10): 1056-1058. |
| [61] | QIAO Y Z, WANG Z D, SUN H, et al.Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects[J]. Microbiome, 2024, 12(1): 101. |
| [62] | ZHOU X, WANG J T, LIU F, et al.Cross-Kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease[J]. Nature communications, 2022, 13(1): 7890. |
| [63] | XIANG L L, HARINDINTWALI J D, WANG F, et al.Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants[J]. Environmental science & technology, 2022, 56(23): 16546-16566. |
| [64] | 匙中文. 有机污染场地微生物修复复杂体系的生物毒性研究[D].北京:北京建筑大学,2023. |
| [65] | 邓红艳. 某工厂厂区土壤铬污染及其微生物修复研究[D].重庆:重庆大学,2016. |
| [66] | 伍德洋,张再刚,彭文勇,等.促生菌对烟草生长及土壤微生物数量及养分的影响[J].四川农业科技,2021(12):76-80. |
| [67] | 韩丽珍,刘畅,周静.接种促生菌对花生根际土壤微生物及营养元素的影响[J].基因组学与应用生物学,2019,38(7):3065-3073. |
| [68] | 李庆,王洲章,张欢欢,等.四株植物根际促生菌对设施番茄土壤氧化亚氮排放的影响[J/OL].南京信息工程大学学报,1-21[2024-08-15].https://doi.org/10.13878/j.cnki.jnuist.2024 0430002. |
| [69] | DING S F, LIANG Y P, WANG M S, et al.Less is more: A new strategy combining nanomaterials and PGPB to promote plant growth and phytoremediation in contaminated soil[J]. Journal of hazardous materials, 2024, 469: 134110. |
| [70] | 胡海玲,马钰雯,耿赫阳,等.丛枝菌根真菌AMF提高植物抗逆性的组学技术研究进展[J].植物营养与肥料学报,2022,28(10):1928-1936. |
| [71] | 杨沐,郭寰,段国珍,等.丛枝菌根真菌在提高植物抗逆性与土壤改良中的作用与机制研究进展[J].中国粉体技术,2024,30(2):164-172. |
| [72] | BELKEBLA N, BESSAI S A, MELO J, et al.Restoration of Triticum aestivum growth under salt stress by phosphate-solubilizing bacterium isolated from southern Algeria[J]. Agronomy, 2022, 12(9): 2050. |
| [73] | FRANSGO K, LIN L C, RHO H.Distinct interactions of ericoid mycorrhizae and plant growth-promoting bacteria: Impacts on blueberry growth and heat resilience[J]. Plant signaling & behavior, 2024, 19(1): 2329842. |
| [74] | BHAGAT N, RAGHAV M, DUBEY S, et al.Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance[J]. Journal of microbiology and biotechnology, 2021, 31(8): 1045-1059. |
| [75] | 翟凯辉,张影影,高夕全.种子内生菌促生机制和抗病机理研究进展[J].农业生物技术学报,2023,31(9):1965-1979. |
| [76] | QIN L J, TIAN P D, CUI Q Y, et al.Bacillus circulans GN03 alters the microbiota, promotes cotton seedling growth and disease resistance, and increases the expression of phytohormone synthesis and disease resistance-related genes[J]. Frontiers in plant science, 2021, 12: 644597. |
| [77] | SOLANO-ALVAREZ N, VALENCIA-HERNÁNDEZ J A, RICO-GARCÍA E, et al. A novel isolate of Bacillus cereus promotes growth in tomato and inhibits Clavibacter michiganensis infection under greenhouse conditions[J]. Plants, 2021, 10(3): 506. |
| [78] | 许景钢,孙涛,李嵩.我国微生物肥料的研发及其在农业生产中的应用[J].作物杂志,2016(1):1-6. |
| [79] | 张晓燕. 微生物肥料在农业生产中的应用研究[J].种子科技,2024,42(13):155-157. |
| [80] | ZHENG X M, XU W H, DONG J, et al.The effects of biochar and its applications in the microbial remediation of contaminated soil: A review[J]. Journal of hazardous materials, 2022, 438: 129557. |
| [81] | TRAN H T, BOLAN N S, LIN C, et al.Succession of biochar addition for soil amendment and contaminants remediation during co-composting: A state of art review[J]. Journal of environmental management, 2023, 342: 118191. |
| [82] | 刘围,潘宇,宋天顺,等.解磷生物炭基肥料制备的优化及其对葡萄生长及土壤质量的影响[J].生物加工过程,2024, 22(4):403-411. |
| [83] | 张思雨,庄卫东.炭基微生物肥料在农业上的应用分析[J].现代化农业,2023(3):24-26. |
| [84] | AN C C, SUN C J, LI N J, et al.Nanomaterials and nanotechnology for the delivery of agrochemicals: Strategies towards sustainable agriculture[J]. Journal of nanobiotechnology, 2022, 20(1): 11. |
| [85] | KOMAL, SHABAAN M, ALI Q, et al.Exploring the synergistic effect of chromium (Cr) tolerant Pseudomonas aeruginosa and nano zero valent iron (nZVI) for suppressing Cr uptake in Aloe vera[J]. International journal of phytoremediation, 2024, 26(9): 1474-1485. |
| [86] | DJAYA L, HERSANTI, ISTIFADAH N, et al.In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS)[J].Biocatalysis and agricultural biotechnology,2019,19: 101153. |
| [87] | 赵秉强,张福锁,廖宗文,等.我国新型肥料发展战略研究[J].植物营养与肥料学报,2004,10(5):536-545. |
| [88] | BHATTACHARYYA P N, JHA D K.Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture[J]. World journal of microbiology & biotechnology, 2012, 28(4): 1327-1350. |
| [89] | 杨欣.群体感应(QS)对吡咯伯克霍尔徳氏菌JK-SH007内生定殖的影响[D].山西临汾:山西师范大学,2020. |
| [90] | 翁凌胤,栾冬冬,周大朴,等.利用合成菌群促进作物健康:进展与展望[J].应用生态学报,2024,35(3):847-857. |
| [91] | 马亮亮. 乡村振兴视域下农业绿色发展评价研究[J].农业经济,2024(6):29-31. |
| [1] | GUO Si, ZHANG Dong-min, LI Nan, YANG Yu-wei, LI Yuan-fang, XIANG Yan-fei, CHENG Shou-wen. Research on the construction and evaluation of farmers' green agricultural competency model:Taking the farmers in Hubei Province as an example [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(18): 203-209. |
| [2] | FENG Jing-yun, NIE Xin-xing, LIU Bo, LI Fang-min, YANG Li. Effects of different passivators on available cadmium contents in paddy soil and its accumulation in rice [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(22): 51-55. |
| [3] | DENG Qiu, TIAN Zhen-hua, WU Mei-feng, ZHANG Lu. The influence of education level on the green agriculture production in the Yangtze River Economic Belt [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(22): 174-179. |
| [4] | WU Nan-nan, ZHANG Ke, SUN Chen-xi, GU Xiao-yan, SONG Lei, WANG Xin. Research progress on the application of microbial technology in soil remediation [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(13): 5-9. |
| [5] | YANG Tao, LI Jian-guo, WEI Lin-gen, PENG Zhi-ping, CHEN Yuan-hua. The preparation and application of soil remediation improver for heavy metal cadmium in farmland [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(13): 28-30. |
| [6] | WANG Zhen-yan, DING Jun, SUN Xiang-hui, ZAHO Jing, CHEN Wan-qiu. Comparative study on the soil cadmium enrichment effects of seven indigenous plant species [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(12): 61-63. |
| [7] | ZHANG Zhi-yi, NIE Xin-xing, YANG Li, FAN Xian-peng, YU Yan-feng, DING Lu-ping. Effects of natural igneous rocks on bioavailability of cadmium in soils with different pollution levels [J]. HUBEI AGRICULTURAL SCIENCES, 2019, 58(24): 88-92. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||