| [1] |
黄宁,祖庆学,刘红峰,等.空气源热泵烤房与生物质新能源烤房对烤后烟叶经济效益的影响[J].贵州农业科学,2020,48(3):141-143.
|
| [2] |
李静浩,孙光伟,陈振国,等.烟叶烘烤技术研究进展与智能烘烤技术展望[J].湖南文理学院学报(自然科学版),2021,33(4):88-92.
|
| [3] |
白万明,黄逸兰,徐希祥,等.密集烤房物联网智能烤烟系统开发与应用研究[J].浙江农业科学,2022,63(7):1610-1616.
|
| [4] |
THOMAS C E.Techniques of image analysis applied to the measurement of tobacco and related products[A] 42nd Tobacco Chemists’ Research Conference[C].North Carolina StateUniversity:Tobacco science research conference papers, 1988.
|
| [5] |
ZHANG J, SOKHANSANJ S, WU S, et al.A trainable grading system for tobacco leaves[J]. Computers and electronics in agriculture, 1997, 16(3): 231-244.
|
| [6] |
YAWOOTTI A, KAEWTRAKULPONG P.A machine vision system for Thai flue-cured tobacco classification[A].Electrical engineering/electronics, computer, telecommunications, and information technology international conference[C].Thailand: IEEE Xplore,2005.
|
| [7] |
HAN L.Recognition of the part of growth of flue-cured tobacco leaves based on support vector machine[A].Proceedings of the 2008 7th world congress on intelligent control and automation[C]. New York:IEEE, 2008.
|
| [8] |
汪睿琪,张炳辉,顾钢,等.基于YOLOv5的鲜烟叶成熟度识别模型研究[J].中国烟草学报,2023,29(2):46-55.
|
| [9] |
LI Q, SHAO Z, ZHOU W, et al.MobileOne-YOLO: Improving the YOLOv7 network for the detection of unfertilized duck eggs and early duck embryo development-a novel approach[J]. Computers and electronics in agriculture, 2023, 214: 108316.
|
| [10] |
WU X, WU X, LI D, et al.Tobacco leaves maturity classification based on deep learning and proximal hyperspectral imaging[J]. Analytical letters, 2024, 57(13): 2034-2049.
|
| [11] |
LI J X, ZHAO H, ZHU S P, et al.An improved lightweight network architecture for identifying tobacco leaf maturity based on deep learning[J]. Journal of intelligent and fuzzy systems, 2021, 41(2): 4149-4158.
|
| [12] |
张成双,王先伟,刘志刚,等.基于深度学习的烟叶烘烤实时识别研究[J].智慧农业导刊,2022,2(21):18-22.
|
| [13] |
姜增昀,朱世平,冯川,等.高精度轻量级烟叶烘烤阶段识别模型研究[J].中国烟草学报,2023,29(1):55-63.
|
| [14] |
Ultralytics[EB/OL].(2023-01-10)[2023-05-20]. https://github.com/ultralytics/ultralytics.
|
| [15] |
CAI H, LI J, HU M, et al. EfficientViT: Multi-scale linear attention for high-resolution dense prediction[J]. arXiv preprint arXiv:2205.14756, 2022.
|
| [16] |
SANDLER M, HOWARD A, ZHU M, et al.MobileNetV2: Inverted residuals and linear bottlenecks[A].Proceedings of the IEEE conference on computer vision and pattern recognition[C].Salt palace convention center:IEEE computer society, 2018.
|
| [17] |
XIA Z, PAN X, SONG S, et al.Vision Transformer with deformable attention[A].Proceedings of the IEEE/CVF conference on computer vision and pattern recognition[C].New Orleans, LA, USA:IEEE, 2022.4794-4803.
|
| [18] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: Scaling cross stage partial network[A].Proceedings of the IEEE/CVF conference on computer vision and pattern recognition[C].Virtual conference:IEEE,2021.13029-13038.
|
| [19] |
ZHENG Z, WANG P, REN D, et al.Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE transactions on cybernetics,2021,52(8): 8574-8586.
|
| [20] |
ZHANG Y F, REN W, ZHANG Z, et al.Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
|
| [21] |
AL-FURAIJI O J, ANH TUAN N, TSVIATKOU V Y. A new fast efficient non-maximum suppression algorithm based on image segmentation[J]. Indonesian journal of electrical engineering and computer science, 2020, 19(2): 1062-1070.
|
| [22] |
WANG C Y, YEH I H, MARK LIAO H Y. Yolov9: Learning what you want to learn using programmable gradient information[A].European conference on computer vision[C]. Cham: Springer nature switzerland, 2024.
|
| [23] |
CHEN P Y, ZHOU J, ZHANG S, et al.Parallel residual Bi-fusion feature pyramid network for accurate single-shot object detection[J]. IEEE transactions on image processing, 2021, 30: 9099-9111.
|
| [24] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Hawaii convention center: IEEE computer society,2017.2117-2125.
|
| [25] |
CHEN Y M, JIANG H, ZHOU Y Q, et al. YOLO-MS: Rethinking multi-scale representation learning for real-time object detection[J]. arXiv preprint arXiv:2308.05480, 2023.
|
| [26] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Why did you say that?[J]. arXiv preprint arXiv:1611.07450, 2016.
|
| [27] |
李增盛,孟令峰,王松峰,等.基于图像处理的烟叶烘烤阶段判别模型优选[J].中国烟草学报,2022,28(2):65-76.
|
| [28] |
邢玉清,樊彩霞,豆根生,等.基于小波核极限学习机的烟叶烘烤过程的智能识别[J].中国烟草学报,2024,30(1):55-62.
|