HUBEI AGRICULTURAL SCIENCES ›› 2020, Vol. 59 ›› Issue (6): 10-15.doi: 10.14088/j.cnki.issn0439-8114.2020.06.002
• Reviews • Previous Articles Next Articles
ZHOU Jun, XU Ru-hong, XIE Xin, REN Ming-jian
Received:
2019-06-10
Online:
2020-03-25
Published:
2020-06-13
CLC Number:
ZHOU Jun, XU Ru-hong, XIE Xin, REN Ming-jian. Research advances on wheat powdery mildew resistance and molecular markers[J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(6): 10-15.
[1] 王宏梅. 贵农6号小麦抗白粉病基因的分子标记[D].贵阳:贵州大学,2009. [2] 申晓柯. 小麦白粉病新抗源的遗传分析及抗性基因的分子标记定位[D].成都:四川农业大学,2013. [3] 刘万才,刘振东,黄冲,等.近10年农作物主要病虫害发生危害情况的统计和分析[J].植物保护,2016,42(5):1-9. [4] 王保勤. 兰考906抗白粉病新基因的分子标记筛选[D].郑州:河南农业大学,2008. [5] 巢凯翔. 三个小麦品种(系)抗条锈病和白粉病基因的遗传分析和分子作图[D].陕西杨凌:西北农林科技大学,2018. [6] 郝元峰. 小麦抗白粉病基因的分子标记定位及标记辅助选择[D].济南:山东农业大学,2008. [7] 马宏棋. 普通小麦抗白粉病新基因的发掘和分子标记定位[D].南京:南京农业大学,2010. [8] 黄苗苗. 甘肃省小麦白粉病菌的温度敏感性及其抗病性遗传分析[D].兰州:甘肃农业大学,2015. [9] 才旦卓玛. 2012年小麦白粉病菌温度敏感性和遗传多样性的相关性研究[D].西宁:青海大学,2014. [10] 杨美娟,黄坤艳,韩庆典.小麦白粉病及其抗性研究进展[J].分子植物育种,2016,14(5):1244-1254. [11] WOLFE M S,SCHWARZBACH E.Patterns of race changes in powdery mildews[J].Annu Rev Phytopathol,1978,16:159-180. [12] PERSAUD R R.Virulence genes and virulence gene frequencecies of [13] PARKS R,CARBONE I,MURPHY J P,et al.Virulence structure of the eastern of U.S. wheat powdery mildew population[J].Plant disease,2008,92(7):1074-1082. [14] 段双科,许育彬,吴兴元.小麦白粉病菌致病毒性和抗病基因及抗病育种研究进展[J].麦类作物学报,2002,22(2):83-86. [15] 郭建国. 甘肃中部小麦白粉病流行影响因素初步探讨及我国部分麦区小麦白粉菌抗药性监测[D].兰州:甘肃农业大学,2005. [16] 肖仲久. 贵州省小麦白粉菌群体多样性分析及品种抗性研究[D].贵阳:贵州大学,2006. [17] 魏松红,曹远银,牟连晓.东北春麦区小麦白粉病菌生理小种鉴定及毒性基因分析[J].植物保护学报,2006,33(1):27-31. [18] 季宏平,孟庆林,王芊,等.黑龙江省小麦白粉病菌毒性结构和毒力频率研究[J].黑龙江农业科学,2007(3):49-52. [19] 王龙,王生荣,甘丽萍.甘肃中西部春小麦白粉菌群体毒性分析[J].西北农业学报,2005,14(1):106-110. [20] 王振花,刘伟,高海峰,等.新疆小麦白粉病菌群体的毒性监测和分析[J].新疆农业科学,2017,54(10):1903-1910. [21] YUAN H J,ZENG X Q,YANG Q F,et al.Gene coexpression network analysis combined with metabonomics reveals the resistance responses to powdery mildew in [22] TOYDA H,MATSUDA Y,RAMAGE T,et al.Suppression of powdery mildew pathogen by chitinase microinjection into barely coleoptileepidermal cells[J].Plant cell reports,1991(10):217-220. [23] SCHMMBAUM A,MAUCH F,VOGELI U,et al.Plant chitinases are potential inhibititors of fungal growth[J].Nature,1986(24):365-367. [24] 李新燕,陈文品,马正强.小麦白粉菌诱导的几丁质酶同工酶分析[J].南京农业大学学报,2002,25(1):1-4. [25] 李爱丽. 小麦抗白粉病基因同源序列的分离鉴定及分子标记的研究[D].河北保定:河北农业大学,2002. [26] 韩永光,马利刚,赵乐,等.植物抗性基因 [27] ZHANG X,DODDS P N,BERNOUX M.What do we know about NOD-like receptors in plant immunity?[J].Annual of review of phytopathology,2017,55:205-229. [28] GAO J,BI W S,LI H P,et al. [29] WANG X D,BI W S,GAO J,et al.Systemic acquired resistance, [30] KOLLER TERESA,BRUNNER SUSANNE,HEREN GERHARD,et al.Field grown transgenic [31] RAJARAMAN J,DOUCHKOV D,LUECK S,et al.The partial duplication of an E3-ligase gene in [32] LIU J,ZHI P F,WANG X Y,et al.Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense response to [33] GENG S,KONG X,SONG G,et al.DNA methylation dynamics during the interaction of wheat progenitor [34] GUO J,LIU C,ZHAI S N,et al.Molecular and physical mapping of powdery mildew resistance genes and QTLs in wheat:A review[J].Agricultural science & technology,2017, 18(6):965-970. [35] HEUN M,FRIEBE B,BUSHUK W.Chronosomal location of the powdery mildew resistance gene of Amigo wheat[J].Phytopathology,1990,80(10):1129-1133. [36] HSAM S L K,ZELLER F J. Evidence of allelism between genes [37] TAN C,LI G,COWGER C,et al.Characterization of [38] WIERSMA A T,PULMAN J A,BROWN L K,et al.Identification of [39] LIU W,KOO D H,XIA Q,et al.Homoelologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene [40] HAO M,LIU M,LIU J T,et al.Introgression of powdery mildew resistance gene [41] ZHANG R Q,SUN B X,CHEN P D,et al. [42] ZHANG R Q,FAN Y L,KONG L N,et al. [43] SUN H G,HU J H,SONG W,et al. [44] ZOU S H,WANG H,LI Y W,et al.The NB-LRR gene [45] 张志良. 小麦地方品种红蚰麦抗白粉病基因的发掘和定位[D].南京:南京农业大学,2015. [46] DAS M K,GRIFFEY C A.Diallel analysis of adult-plant resistance to powdery mildew in wheat[J].Crop Sci,1994,34(4):948-952. [47] DAS M K,GRIFFEY C A.Gene action for adult-plant resistance to powdery mildew in wheat[J].Genome,1995,38(2):277-282. [48] PIETERSE C M,WEES S C,PELT J A,et al.A novel signaling pathway controlling induced systemic resistance in [49] WYATT S,PAN S,KUC J.β-1,3-Glucanase,chitinase and peroxidase activities in tobacco tissues resistant and susceptible to blue mould as related to flowering,age and ucker development[J].Physiology molecular plant pathology,1991,39(6):433-440. [50] WARD E W B,STOSSEL P,LAZAROVITS G. Similarities between age-related and race-specific resistance of soybean hypocotyls to [51] 张小辉,畅志坚,乔麟轶,等.99份小麦地方品种抗白粉病种质发掘及其分子鉴定[J].山西农业科学,2017,45(5):692-698. [52] 张小辉. 小麦抗白粉病种质资源发掘及其分子标记鉴定[D].太原:山西大学,2017. [53] 隋建枢,任明见,徐如宏.贵农775抗白粉病基因的分子标记定位[J].贵州农业科学,2013,41(1):4-7. [54] 曹廷杰,陈永兴,李丹,等.河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测[J].作物学报,2015,41(8):1172-1182. [55] 刘易科,朱展望,佟汉文,等.湖北省主要小麦品种抗病基因分析[J].分子植物育种,2018,16(4):1040-1049. [56] 张增艳,陈孝,张超,等.分子标记选择小麦抗白粉病基因 [57] 董建力,张增艳,王敬东,等.3种小麦抗白粉病基因聚合体的STS和SCAR标记[J].西北农业学报,2007,16(3):64-67. [58] 高安礼,何华纲,陈全战,等.分子标记辅助选择小麦抗白粉病基 [59] 董娜,张亚娟,张军刚,等.分子标记辅助小麦抗白粉病基因 [60] 朱玉丽,王黎明,王洪刚.小麦抗白粉病基因 [61] 朱玉丽. 小麦抗白粉病基因 [62] 王黎明,朱玉丽,李兴锋,等.小麦抗白粉病基因 [63] 张军刚,董娜,闫文利,等.小麦抗白粉病基因 [64] 王俊美,刘红彦,王飞,等.小麦抗白粉病基因 [65] 王俊美. 小麦抗白粉病基因 [66] 王瑞,刘红彦,王俊美,等.小麦抗白粉病基因 [67] 罗瑛皓. 小麦抗白粉病基因 [68] 殷贵鸿. 小麦抗条锈病和白粉病基因的分子标记[D].陕西杨凌:西北农林科技大学,2009. [69] 陈松柏,蔡一林,周荣华,等.小麦抗白粉病基因 [70] H G HE,S Y ZHU,Y Y JI,et al.Map-based cloning of the gene [71] 兰彩霞. 普通小麦条锈病和白粉病成株抗性QTL定位[D].北京:中国农业科学院,2010. [72] 蔡士宾,程顺和,吴纪中,等.引进小麦白粉病二线抗源的鉴定与改良利用[J].麦类作物学报,2005,25(6):124-128. [73] 张菲菲. 转抗赤霉病基因小麦的聚合育种和回交转育研究[D].武汉:华中农业大学,2015. |
[1] | DONG Qian, ZHAO Chi-na, LI Jun-kai. Study on the systemicity of phenazine-1-carboxylic acid-valine conjugates in wheat plants [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(9): 21-25. |
[2] | ZHU Wen-da, YAN Dong-dong, LI Lin, ZHOU Yong-an, CAO Ao-cheng. Effect of pinoxaden·mesosulfuron-methyl on weed control,nutrient and yield in wheat field [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(8): 98-101. |
[3] | SUN Wan-ru, SHEN Jian-lin, LI Yong, WANG Yi, WANG Bo. Effects of different water and fertilizer treatments on soil nitrogen and phosphorus fertility characteristics in rice-wheat rotation field [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(6): 23-26. |
[4] | HUANG Ming-hui, ZHANG Qian-ru, HAN Meng-qi, GAO Xi-long, LI Hua, LUO Xing. Applied research on preparation of biotechnology fulvic acid by straw [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(6): 27-30. |
[5] | GUAN Xin, PENG Yan-lin, HU Yan-shi, ZENG Xia, TU Min. Investigation and analysis of resistance to powdery mildew of rubber tree germplasm resources [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(6): 60-63. |
[6] | LI Zhong-cai. Study on the technical efficiency of wheat production in China based on stochastic frontier model [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(3): 149-151. |
[7] | HAO Wang-li, WEI Pei-yan, HAN Meng, ZHANG Li, XI Rui-ze. Detection and counting of wheat ears based on YOLOv3 network [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(2): 158-160. |
[8] | SHEN Hai-long, CHEN Li, CAO Yong-zhou, ZHAO Yong-tao, YUAN Qian, FAN Zhi-ye, HOU Yan-hong, CHEN Qi, LIU Di, LI Shi-min. Evaluation of wheat leaf rust resistance of 55 winter wheat varities in Henan province [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(10): 18-20. |
[9] | JIAN Yong-mei, ZHANG Jian-yun. Forecast of meteorological grades of winter wheat snow mold in Changji [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(9): 24-27. |
[10] | WU Xiu-ning, LIU Ying, WANG Xin-jun, ZHAO Zhi-xin, ZHAO Peng. Effects of nitrogen on growth and physiological characteristics of wheat seedlings under drought stress [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(8): 21-24. |
[11] | LIU Ying, ZHOU Zhong-wen, QIU Ning-gang, LI Qiao-xia. Relationship analysis between autumn precipitation characteristics and wheat yield in northwest China [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(8): 41-44. |
[12] | ZHU Wen-da, WU Jia-jia, LI Lin, SONG Zhao-xin, ZHU Jia-hong, YAN Dong-dong, WANG Qiu-xia, LI Yuan. Effects of compound preparation of tribenuron and fluoroglycofen-ethyl WP on weeds control and nutrient content in wheat field [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(8): 71-73. |
[13] | ZHU Wen-da, CAO Ao-cheng, WU Jia-jia, LI Lin, SONG Zhao-xin, ZHU Jia-hong, YAN Dong-dong, WANG Qiu-xia, LI Yuan. Effects of triasulfuron·isoproturon on controlling weeds and nutrient in wheat field [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(8): 74-76. |
[14] | ZHU Wen-da, YAN Dong-dong, LI Lin, CAO Ao-cheng. Effect of mesosulfuron-methyl·florasulam·fluroxypyr-meptyl on weed control,nutrient and yield in wheat field [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(6): 91-95. |
[15] | ZHU Wen-da, YAN Dong-dong, LI Lin, CAO Ao-cheng. Effect of florasulam·halosulfuron-methyl on weed control,nutrient and yield in wheat field [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(6): 96-99. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 539
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 843
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||