[1] 董惠钧, 姜俊云, 郑立军, 等. 新型微生态益生菌凝结芽孢杆菌研究进展[J]. 食品科学, 2010,31(1):292-294. [2] AI F, HUANG X D, WU Y L, et al.Alleviative effects of a novel strain Bacillus coagulans XY2 on copper-induced toxicity in zebrafish larvae[J]. J Environ Sci (China), 2023,125:750-760. [3] WU Y P, LIU D M, ZHAO S, et al.Assessing the safety and probiotic characteristics of Bacillus coagulans 13002 based on complete genome and phenotype analysis[J]. LWT-Food science and technology, 2022,155:112847. [4] KHATRI I, SHARMA S, RAMYA T N C, et al. Complete genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, two phylogenetically distinct probiotics[J]. Plos one, 2016,11(6):e156745. [5] 孙研, 王永红. 不同凝结芽孢杆菌在单一及混合碳源下的发酵特性[J]. 食品工业科技, 2020,41(16):74-80. [6] REYES-MENDEZ A I, FIGUEROA-HERNANDEZ C, MELGAR-LALANNE G, et al. Production of calcium- and iron-binding peptides by probiotic strains of Bacillus subtilis, B-clausii and B-coagulans GBI-30[J]. Revista mexicana de ingenieria quimica, 2015,14(1):1-9. [7] SU F, XU P.Genomic analysis of thermophilic Bacillus coagulans strains: Efficient producers for platform bio-chemicals[J]. Scientific reports, 2014,4:3926. [8] 潘林, 孙建义. 生物素的生理功能及其分子作用机制[J]. 中国饲料, 2005(6):21-24. [9] 姚婉婷, 李可, 宋娜, 等. 硫胺素对鲁氏接合酵母高盐适应性的影响[J]. 中国酿造, 2020,39(11):78-84. [10] PACZIA N, NILGEN A, LEHMANN T, et al.Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms[J]. Microb Cell Fact, 2012,11:122. [11] PAPADIMITRIOU K, ALEGRÍA Á, BRON P A, et al. Stress physiology of lactic acid bacteria[J]. Microbiol Mol Biol Rev, 2016,80(3):837-890. [12] MOLS M, ABEE T.Primary and secondary oxidative stress in Bacillus[J]. Environmental microbiology, 2011,13(6):1387-1394. [13] YE L D, ZHOU X D, HUDARI M S B, et al. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106[J]. Bioresour Technol, 2013,132:38-44. [14] XIAO T T, ZHANG D W, TUN H M, et al.Cysteine protected cells from H2O2-induced damage and promoted long-chain fatty acids synthesis in vivo to improve γ-aminobutyric acid production in Levilactobacillus brevis[J]. World J Microbiol Biotechnol, 2022,38(11):185. [15] CHANDRANGSU P, LOI V V, ANTELMANN H, et al.The role of bacillithiol in gram-positive firmicutes[J]. Antioxid Redox Signal, 2018,28(6):445-462. [16] 赵丽娜. 凝结芽孢杆菌的筛选及高密度培养工艺研究[D]. 河南洛阳:河南科技大学, 2017. [17] 李环, 陆佳平, 王登进. DNS法测定山楂片中还原糖含量的研究[J]. 食品工业科技, 2013,34(18):75-77. [18] 李宪民, 丁芳, 樊伟丽, 等. 生物传感分析仪测定葡萄糖和L-乳酸的影响因素研究[J]. 食品工业科技, 2009(2):289-291. [19] SATIAPUTRA J, EIJKELKAMP B A, MCDEVITT C A, et al.Biotin-mediated growth and gene expression in Staphylococcus aureus is highly responsive to environmental biotin[J]. Applied microbiology and biotechnology, 2018,102(8):3793-3803. [20] COTTER P D, HILL C.Surviving the acid test: Responses of gram-positive bacteria to low pH[J]. Microbiol Mol Biol Rev, 2003,67(3):429-453. [21] HAMITOUCHE F, ARMENGAUD J, DEDIEU L, et al.Cysteine proteome reveals response to endogenous oxidative stress in Bacillus cereus[J]. International journal of molecular sciences, 2021, 22(14):7550. [22] CHEN Y, SUN Y, LIU Z H, et al.Genome-scale modeling for Bacillus coagulans to understand the metabolic characteristics[J]. Biotechnology and bioengineering, 2020,117(11):3545-3558. [23] LARSEN R, BUIST G, KUIPERS O P, et al.ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis[J]. J Bacteriol, 2004,186(4):1147-1157. [24] IMLAY J A.The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium[J]. Nat Rev Microbiol, 2013,11(7):443-454. [25] 涂家霖, 赵珊, 周钦育, 等. 凝结芽孢杆菌13002产芽胞条件优化[J]. 食品工业科技, 2021,42(6):88-96, 102. |