[1] 杨晶晶,赵旭耀,李高洁,等.浮萍的研究及应用[J].科学通报,2021,66(9):1026-1045. [2] ZHANG Y M,JIA R,HUI T Y,et al.Transcriptomic and physiological analysis of the response of Spirodela Polyrrhiza to sodium nitroprusside[J].BMC plant biology,2024,24(1):95. [3] KIM J,PARK S,LEE H.Antioxidant properties of Lemna minor extracts and their potential applications in food preservation[J].Journal of food science,2021,86(4):1650-1660. [4] XU J W,SHEN Y T,ZHENG Y,et al.Duckweed (Lemnaceae) for potentially nutritious human food: A review[J].Food reviews international,2023,39(7):3620-3634. [5] JUN J H,XIAO X R,RAO X L,et al.Proanthocyanidin subunit composition determined by functionally diverged dioxygenases[J].Nature plants,2018,4(12):1034-1043. [6] 刘玟君,李金洲,陈子隽,等.原花青素的研究进展[J].湖北农业科学,2021,60(14):5-9. [7] CHEN Q,LIANG X,WU C L,et al.Overexpression of leucoanthocyanidin reductase or anthocyanidin reductase elevates tannins content and confers cassava resistance to two-spotted spider mite[J].Frontiers in plant science,2022,13:994866. [8] WANG Y,ZHANG X,LIU H.Health benefits of proanthocyanidins: A review of the evidence[J].Journal of nutritional biochemistry,2020,120:150-165. [9] SEFERLI M,KOTANIDOU C,LEFKAKI M,et al.Bioactives of the freshwater aquatic plants, Nelumbo nucifera and Lemna minor, for functional foods, cosmetics and pharmaceutical applications, with antioxidant, anti-inflammatory and antithrombotic health promoting properties[J].Applied sciences,2024,14(15):6634. [10] LIU Y,LI C T,YAN R T,et al.Metabolome and transcriptome analyses of the flavonoid biosynthetic pathway for the efficient accumulation of anthocyanins and other flavonoids in a new duckweed variety (68-red)[J].Journal of plant physiology,2022,275:153753. [11] LIU C G,WANG X Q,SHULAEV V,et al.A role for leucoanthocyanidin reductase in the extension of proanthocyanidins[J].Nature plants,2016,2(12):16182. [12] 贾展慧,贾晓东,许梦洋,等.薄壳山核桃原花青素合成关键酶基因的克隆与表达分析[J].南京林业大学学报(自然科学版),2022,46(5):49-57. [13] 曾益春,刘刚,代洁,等.桑树花青素合成相关基因MaLAR和MaUGAT的克隆与表达分析[J].蚕业科学,2023,49(5):385-394. [14] SUN S H,QI X J,ZHANG Z Z,et al.A structural variation in the promoter of the leucoanthocyanidin reductase gene AaLAR1 enhances freezing tolerance by modulating proanthocyanidin accumulation in kiwifruit (Actinidia arguta)[J].Plant, cell & environment,2024,47(10):4048-4066. [15] PAOLOCCI F,ROBBINS M P,MADEO L,et al.Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of Leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus[J].Plant physiology,2007,143(1):504-516. [16] WANG L J,JIANG Y Z,YUAN L,et al.Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa[J].PLoS one,2013,8(5): e64664. [17] WANG P Q,ZHANG L J,JIANG X L,et al.Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis[J].Planta,2018,247(1):139-154. [18] LIU Y,SHI Z,MAXIMOVA S,et al.Proanthocyanidin synthesis in Theobroma cacao: Genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase[J].BMC plant biology,2013, 13:202. [19] TAO X,FANG Y,XIAO Y,et al.Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation[J].Biotechnology for biofuels,2013,6(72):1-15. [20] 唐娅丽,于昌江,刘宇,等.浮萍合成生物学研究进展[J].生命科学,2020,32(2):100-109. [21] LIU Y,WANG Y,XU S Q,et al.Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis[J].Plant biotechnology journal,2019,17(11):2143-2152. [22] 李志丹,方扬,靳艳玲,等.少根紫萍转录因子及其营养胁迫下的表达[J].应用与环境生物学报,2018,24(1):97-101. [23] ZHU Y R,LI X X,GAO X,et al.Molecular mechanism underlying the effect of maleic hydrazide treatment on starch accumulation in S. Polyrrhiza 7498 fronds[J]. Biotechnology for biofuels,2021,14:99. [24] 胡月,赵舒媛,张亚美,等.川西獐牙菜SmC4H基因的生物信息学分析和表达分析[J].分子植物育种,2024,22(8):2528-2536. [25] TANNER G J,FRANCKI K T,ABRAHAMS S,et al.Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA[J].Journal of biological chemistry,2003, 278(34):31647-31656. [26] CHEMLER J A,FOWLER Z L,MCHUGH K P,et al.Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering[J].Metabolic engineering,2010,12(2):96-104. [27] BOGS J,DOWNEY M O,HARVEY J S,et al.Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves[J]. Plant physiology,2005,139(2):652-663. [28] WANG L,LI S L,SUN L,et al.Over-expression of phosphoserine aminotransferase-encoding gene (AtPSAT1) prompts starch accumulation in L. turionifera under nitrogen starvation[J].International journal of molecular sciences,2022,23(19):11563. [29] TAO X,FANG Y,HUANG M J,et al.High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed (Landoltia punctata)[J].BMC genomics,2017,18(1):166. [30] MA B,SONG Y,FENG X H,et al.Integrated metabolome and transcriptome analyses reveal the mechanisms regulating flavonoid biosynthesis in blueberry leaves under salt stress[J].Horticulturae,2024,10(10):1084. [31] RANKENBERG T,GELDHOF B,VAN VEEN H,et al.Age-dependent abiotic stress resilience in plants[J]. Trends in plant science,2021,26(7):692-705. |