湖北农业科学 ›› 2025, Vol. 64 ›› Issue (10): 184-189.doi: 10.14088/j.cnki.issn0439-8114.2025.10.028

• 信息工程 • 上一篇    下一篇

基于多时相遥感生态指数的生态环境质量时空演变——以柳州市鱼峰区为例

余鹏程1, 任慈2, 李小龙1, 罗蕾1, 肖建林1, 赵依彤1, 贺新乐1   

  1. 1.柳州工学院土木建筑工程学院,广西 柳州 545616;
    2.广西大学土木建筑工程学院,南宁 530004
  • 收稿日期:2025-02-15 出版日期:2025-10-25 发布日期:2025-11-14
  • 通讯作者: 李小龙(2002-),男,陕西西安人,在读本科生,专业方向为生态遥感,(电话)13032927834(电子信箱)450216401@qq.com。
  • 作者简介:余鹏程(1997-),男,河南信阳人,助教,硕士,主要从事农业气象、生态遥感研究,(电话)13352416955(电子信箱)924011360@qq.com。
  • 基金资助:
    国家重点研发计划课题(2022YFF0801304; 2017YFD0301704; 2016YFD0300307); 中国气象局沈阳大气环境研究所结余资金项目(2022SYIAEJY12); 柳州工学院大学生创新创业训练计划项目(S202413639032); 中国气象局沈阳大气环境研究所联合开放基金(2021SYIAEKFZD05); 公益性行业科研专项(20150312705)

Spatiotemporal evolution of eco-environmental quality based on multi-temporal remote sensing ecological index: A Case Study of Yufeng District, Liuzhou City

YU Peng-cheng1, REN Ci2, LI Xiao-long1, LUO Lei1, XIAO Jian-lin1, ZHAO Yi-tong1, HE Xin-le1   

  1. 1. School of Civil Engineering and Architecture, Liuzhou Institute of Technology, Liuzhou 545616, Guangxi, China;
    2. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  • Received:2025-02-15 Published:2025-10-25 Online:2025-11-14

摘要: 以广西柳州市鱼峰区作为研究对象,利用多时相Landsat数据,通过构建遥感生态指数(RSEI)模型,对鱼峰区生态环境质量进行综合评价。研究选取了2015年、2018年和2022年的相近月份遥感影像,提取绿度、湿度、干度和热度4个生态因子,采用主成分分析法构建RSEI模型。结果表明,鱼峰区的RSEI呈逐年增加的趋势,RSEI从2015年的0.17上升至2022年的0.48。2015年一般等级区域面积占比最多(30.76%),2018年良好等级区域面积占比最多(24.46%),2022年良好等级区域面积占比最多(41.08%),标志着鱼峰区生态环境进入整体向好的阶段。2022年鱼峰区优秀和良好等级的区域分布于北部、东部及中南部,面积较2015年和2018年有所增加;一般、较差等级的区域分布在鱼峰区中部、西南部及部分居民区;差等级的区域面积减少,在全区零星分布。在2015—2018年及2015—2022年2个时间跨度下,鱼峰区生态环境改善的区域均多于变差的区域,表明该区生态环境保持了整体向好的积极态势。

关键词: 多时相遥感, 生态指数(RSEI), 生态环境质量, 时空演变, 柳州市鱼峰区

Abstract: Taking Yufeng District of Liuzhou City, Guangxi as the study area, the eco-environmental quality was comprehensively evaluated using multi-temporal Landsat data by constructing a remote sensing ecological index (RSEI) model. Remote sensing images from similar months in 2015, 2018, and 2022 were selected to extract four ecological factors: greenness, wetness, dryness, and heat, and the RSEI model was constructed using principal component analysis. The results showed that the RSEI of Yufeng District exhibited an increasing trend year by year, rising from 0.17 in 2015 to 0.48 in 2022. In 2015, the area with fair grade accounted for the largest proportion (30.76%); in 2018, the area with good grade accounted for the largest proportion (24.46%); and in 2022, the area with good grade accounted for the largest proportion (41.08%), indicating that the eco-environment of Yufeng District entered a stage of overall improvement. In 2022, areas with excellent and good grades were distributed in the northern, eastern, and central-southern parts of Yufeng District, with their areas increased compared to 2015 and 2018. Areas with fair and poor grades were distributed in the central, southwestern parts, and some residential areas of Yufeng District.Areas with bad grade were reduced and sporadically distributed throughout the district. Over the two time spans of 2015—2018 and 2015—2022, the areas with improved eco-environment in Yufeng District were more than those with deteriorated conditions, indicating that the eco-environment of the district maintained a positive trend of overall improvement.

Key words: multi-temporal remote sensing, ecological index (RSEI), eco-environmental quality, spatiotemporal evolution, Yufeng District of Liuzhou City

中图分类号: