[1] XU G P, LIAO W T, ZHANG X, et al.Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation[J]. Pattern recognition, 2023, 143: 109819. [2] CHEN G Y, KRZYZAK A.Face recognition via selective denoising, filter faces and hog features[J]. Signal, image and video processing, 2024, 18(1): 369-378. [3] SINGH R P, DASH R, MOHAPATRA R K.LBP and CNN feature fusion for face anti-spoofing[J]. Pattern analysis and applications, 2023, 26(2): 773-782. [4] MALGE A, DHADUK H M, M M S P. An approach to face detection and recognition using Viola Jones[J]. International journal of engineering and advanced technology, 2019, 8(5s): 52-56. [5] 邹香玲. 目标检测算法研究述评[J].河南广播电视大学学报,2021,34(1):108-112. [6] QIAO H L, YANG X N, LIANG Z Q, et al.A method for extracting joints on mountain tunnel faces based on mask R-CNN image segmentation algorithm[J]. Applied sciences, 2024, 14(15): 6403. [7] Unleashing hidden canines: A novel fast R-CNN based technique for automatic auxiliary canine impaction[J].International journal of advanced technology and engineering exploration (IJATEE),2024,11(115):10102600. [8] MALLAHI E I,RIFFI J,TAIRI H, et al.Efficient vehicle detection and classification algorithm using Faster R-CNN models[J].Journal of automation, mobile robotics and intelligent systems,2024, 18(4):86-93. [9] JIAO L, ABDULLAH M I.YOLO series algorithms in object detection of unmanned aerial vehicles: A survey[J]. Service oriented computing and applications, 2024, 18(3): 269-298. [10] YIN Z B, LIU F Y, GENG H, et al.A high-precision jujube disease spot detection based on SSD during the sorting process[J]. PLoS one, 2024, 19(1): e0296314. [11] 肖恒树,李军营,梁虹,等.基于改进YOLOv8和无人机遥感影像的大田烟株数量检测[J].电子测量技术,2024,47(9):163-171. [12] 余红霞,罗瑞林,云利军,等.基于YOLOv5的烤烟烟叶散把程度检测算法研究[J].烟草科技,2022,55(6):98-105. [13] 朱波,胡朋,刘宇晨,等.基于CSS-Cascade Mask R-CNN的有遮挡多片烟叶部位识别[J].农业工程学报,2024,40(9):271-280. [14] 周运磊,董效杰,刘三军,等.基于改进YOLOv11n的轻量级电力设备过热故障红外图像检测算法[J].湖北民族大学学报(自然科学版),2025,43(1):114-118,140. [15] 吴钟仁,周莲英,丁腊春.基于双向融合和特征增强的SSD小目标检测算法[J].计算机与数字工程,2025,53(1):115-118,175. [16] QIN D F, LEICHNER C, DELAKIS M, et al.MobileNetV4: Universal models for the mobile ecosystem[A]. European conference on computer vision[C]. Cham: Springer nature switzerland, 2024.78-96. [17] TANG Y, HAN K, GUO J, et al.GhostNetv2: Enhance cheap operation with long-range attention[J]. Advances in neural information processing systems, 2022, 35: 9969-9982. [18] TAN M X, LE Q.EfficientNetV2: Smaller models and faster training[A]. International conference on machine learning[C]. PMLR, 2021.10096-10106. [19] CHEN J R, KAO S H, HE H, et al.Run, don’t walk: Chasing higher FLOPS for faster neural networks[A].2023 IEEE/CVF conference on computer vision and pattern recognition(CVPR)[C]. Vancouver, BC, Canada: IEEE, 2023.12021-12031. [20] ZHONG J C, CHEN J Y, MIAN A.DualConv: Dual convolutional kernels for lightweight deep neural networks[J]. IEEE transactions on neural networks and learning systems, 2023, 34(11): 9528-9535. [21] SINGH P, VERMA V K, RAI P, et al.HetConv: Heterogeneous kernel-based convolutions for deep CNNs[A].2019 IEEE/CVF conference on computer vision and pattern recognition(CVPR)[C].Long Beach, CA, USA:IEEE, 2020.4830-4839. [22] ZHANG J N, LI X T, LI J, et al.Rethinking mobile block for efficient attention-based models[A]. 2023 IEEE/CVF international conference on computer vision[C]. Piscataway, USA: IEEE, 2023. 1389-1400. [23] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[EB/OL].(2021-03-04). https://arxiv.org/abs/2103.02907. [24] 周秀珊,文露婷,介百飞,等.改进YOLOv11的水面膨化饲料颗粒图像实时检测算法[J].智慧农业(中英文),2024,6(6):155-167. [25] 张永强,李胜男,张子强,等.R-YOLO轨道人员目标检测模型[J].河北科技大学学报,2023,44(6):580-588. |