湖北农业科学 ›› 2026, Vol. 65 ›› Issue (1): 186-210.doi: 10.14088/j.cnki.issn0439-8114.2026.01.030
罗政辉, 王伟伟, 张玉杰, 王志, 邹景伟, 赵振杰, 魏晨曦, 于亮, 王奉芝, 钮力亚
收稿日期:2025-08-11
出版日期:2026-01-25
发布日期:2026-02-10
通讯作者:
钮力亚(1978-),女,河北定州人,副研究员,硕士,主要从事小麦遗传育种研究,(电子信箱)894069172@qq.com。
作者简介:罗政辉(1997-),男,黑龙江桦南人,研究实习员,硕士,主要从事小麦遗传育种研究,(电子信箱)13100932213@163.com。
基金资助:LUO Zheng-hui, WANG Wei-wei, ZHANG Yu-jie, WANG Zhi, ZOU Jing-wei, ZHAO Zhen-jie, WEI Chen-xi, YU Liang, WANG Feng-zhi, NIU Li-ya
Received:2025-08-11
Published:2026-01-25
Online:2026-02-10
摘要: 小麦(Triticum aestivum L.)倒伏是限制其高产稳产的主要因素,严重影响子粒产量、品质及机械化收获效率。随着分子标记技术的发展,研究人员已在小麦全基因组范围内系统鉴定了多个与抗倒伏相关的数量性状位点(QTL),共定位了753个抗性位点,广泛分布于21条染色体上。2B、4B和4D等染色体上QTL分布尤为密集,形成了抗倒伏遗传调控的热点区域。矮秆基因Rht-B1和Rht-D1被证实是调控株高和增强抗倒性的关键基因。全基因组关联分析(GWAS)和基因编辑等技术的应用进一步推动了抗倒伏相关基因(TaD11-2A、TaARF12、TaPRR1、TaDEP1等)的挖掘与功能验证。尽管已取得显著进展,但多数QTL仍处于粗定位阶段,主效QTL的验证及其在育种中的应用仍面临挑战。未来需推进QTL的精细定位、关键基因的克隆与功能解析,并构建分子标记辅助选择与多基因聚合育种策略,以支撑小麦抗倒伏性状的遗传改良及新品种选育。
中图分类号:
罗政辉, 王伟伟, 张玉杰, 王志, 邹景伟, 赵振杰, 魏晨曦, 于亮, 王奉芝, 钮力亚. 小麦抗倒伏遗传位点与基因研究进展[J]. 湖北农业科学, 2026, 65(1): 186-210.
LUO Zheng-hui, WANG Wei-wei, ZHANG Yu-jie, WANG Zhi, ZOU Jing-wei, ZHAO Zhen-jie, WEI Chen-xi, YU Liang, WANG Feng-zhi, NIU Li-ya. Advances in research on genetic loci and genes related to lodging resistance in wheat[J]. HUBEI AGRICULTURAL SCIENCES, 2026, 65(1): 186-210.
| [1] RABIEYAN E, ALIPOUR H.NGS-based multiplex assay of trait-linked molecular markers revealed the genetic diversity of Iranian bread wheat landraces and cultivars[J]. Crop & pasture science, 2021, 72(3): 173-182. [2] RABIEYAN E,BIHAMTA M R,ESMAEILZADEH MOGHADDAM M, et al.Imaging-based screening of wheat seed characteristics towards distinguishing drought-responsive Iranian landraces and cultivars[J]. Crop & pasture science, 2022, 73(4): 337-355. [3] WANG Q S, BAI J X, XIONG H C, et al.Fine mapping of two recessive genes TaFLA1 and TaSPL8 controlling flag leaf angle in bread wheat[J]. The crop journal, 2024, 12(4): 1159-1167. [4] WANG Y, PAN Y H, ZHAO F L, et al.Changes in the lodging resistance of winter wheat from 1950s to the 2020s in Henan Province of China[J]. BMC plant biology, 2023, 23(1): 442. [5] MULSANTI I W,YAMAMOTO T,UEDA T, et al.Finding the superior allele of Japonica-type for increasing stem lodging resistance in indica rice varieties using chromosome segment substitution lines[J].Rice, 2018, 11(1): 25. [6] ZUO Q S, KUAI J, ZHAO L, et al.The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field[J]. Field crops research, 2017, 203: 47-54. [7] KUAI J, YANG Y, SUN Y Y, et al.Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance inBrassica napusL.[J]. Field crops research, 2015, 180: 10-20. [8] BERRY P M, STERLING M, SPINK J H, et al.Understanding and reducing lodging in cereals[M]. Amsterdam: Elsevier, 2004.217-271. [9] SHAH L, YAHYA M, ALI SHAH S M, et al. Improving lodging resistance: Using wheat and rice as classical examples[J]. International journal of molecular sciences, 2019, 20(17): 4211. [10] PENG D L, CHEN X G, YIN Y P, et al.Lodging resistance of winter wheat (Triticum aestivumL.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid[J]. Field crops research, 2014, 157: 1-7. [11] PEAKE A S, HUTH N I, CARBERRY P S, et al.Quantifying potential yield and lodging-related yield gaps for irrigated spring wheat in sub-tropical Australia[J]. Field crops research, 2014, 158: 1-14. [12] EASSON D L, WHITE E M, PICKLES S J.The effects of weather, seed rate and cultivar on lodging and yield in winter wheat[J]. The journal of agricultural science, 1993, 121(2): 145-156. [13] STERLING M, BAKER C J, BERRY P M, et al.An experimental investigation of the lodging of wheat[J]. Agricultural and forest meteorology, 2003, 119(3-4): 149-165. [14] CONWAY G.The doubly green revolution[M].Ithaca,USA: Cornell university press, 1999. [15] MUSZYNSKA A, GUENDEL A, MELZER M, et al.A mechanistic view on lodging resistance in rye and wheat: A multiscale comparative study[J]. Plant biotechnology journal, 2021, 19(12): 2646-2661. [16] MATSUYAMA H.Breeding and agronomic research on lodging resistance and culm strength of Japanese wheat cultivars[J]. Japan agricultural research quarterly, 2022, 56(4): 303-311. [17] GREBENNIKOVA I, STEPOCHKIN P.Optimization of the breeding process of lodging-resistant varieties of springTriticale[A]. E3S web of conferences[C]. Les Ulis,France:EDP Sciences, 2023. [18] 李召锋,杨茂深,周英,等.滴灌春小麦蜡熟期抗倒性综合评价[J].分子植物育种,2017,15(8):3199-3209. [19] 冯素伟,李小军,丁位华,等.不同小麦品种开花后植株抗倒性变化规律[J].麦类作物学报,2015,35(3):334-338. [20] VERMA V, WORLAND A J, SAVERS E J, et al.Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat[J]. Plant breeding, 2005, 124(3): 234-241. [21] ZHANG K P.QTL mapping for adult-plant resistance to powdery mildew,lodging resistance and internode length below spike in wheat:QTL mapping for adult-plant resistance to powdery mildew,lodging resistance and internode length below spike in wheat[J]. Acta agronomica sinica, 2008, 34(8): 1350-1357. [22] HAI L, GUO H J, XIAO S H, et al.Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivumL.)[J]. Euphytica, 2005, 141(1): 1-9. [23] KONG E Y, LIU D C, GUO X L, et al.Anatomical and chemical characteristics associated with lodging resistance in wheat[J]. The crop journal, 2013, 1(1): 43-49. [24] KELLER M, KARUTZ C, SCHMID J E, et al.Quantitative trait loci for lodging resistance in a segregating wheat × spelt population[J]. Theoretical and applied genetics, 1999, 98(6): 1171-1182. [25] LI C, BAI G, CARVER B F, et al.Mapping quantitative trait loci for plant adaptation and morphology traits in wheat using single nucleotide polymorphisms[J]. Euphytica, 2016, 208(2): 299-312. [26] PIÑERA-CHAVEZ F J, BERRY P M, FOULKES M J, et al. Identifying quantitative trait loci for lodging-associated traits in the wheat doubled-haploid population Avalon × Cadenza[J]. Crop science, 2021, 61(4): 2371-2386. [27] BERRY P M, BERRY S T.Understanding the genetic control of lodging-associated plant characters in winter wheat (Triticum aestivumL.)[J]. Euphytica, 2015, 205(3): 671-689. [28] NIU Y N, CHEN T X, ZHAO C C, et al.Identification of QTL for stem traits in wheat (Triticum aestivumL.)[J]. Frontiers in plant science, 2022, 13: 962253. [29] RABIEYAN E, DARVISHZADEH R, ALIPOUR H.Genetic analyses and prediction for lodging-related traits in a diverse Iranian hexaploid wheat collection[J]. Scientific reports, 2024, 14: 275. [30] LEONOVA I N, AGEEVA E V.Localization of the quantitative trait loci related to lodging resistance in spring bread wheat (Triticum aestivumL.)[J]. Vavilov journal of genetics and breeding, 2022, 26(7): 765-683. [31] DRECCER M F, MACDONALD B, FARNSWORTH C A, et al.Multi-donor × elite-based populations reveal QTL for low-lodging wheat[J]. Theoretical and applied genetics, 2022, 135(5): 1685-1703. [32] ÁVILA C M, REQUENA-RAMÍREZ M D, RODRÍGUEZ-SUÁREZ C, et al. Genome-wide association analysis for stem cross section properties, height and heading date in a collection of Spanish durum wheat landraces[J]. Plants, 2021, 10(6): 1123. [33] AKRAM S, ARIF M A R, HAMEED A. A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivumL.)[J]. Journal of applied genetics,2021,62(1):27-41. [34] 汪涛,张毅,赵晓雪,等.小麦抗倒伏茎秆形态指标及QTL分析[J].华北农学报,2023,38(2):99-105. [35] 于海飞,杜晓宇,殷贵鸿,等.普通小麦抗倒伏相关性状的全基因组关联分析[J].植物遗传资源学报,2022,23(1):147-159. [36] YU M, LIU Z H, YANG B, et al.The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level[J]. Scientific reports, 2020, 10: 12261. [37] LIU H, SHI Z P, MA F F, et al.Identification and validation of plant height, spike length and spike compactness loci in common wheat (Triticum aestivumL.)[J]. BMC plant biology, 2022, 22(1): 568. [38] LI T, LI Q, WANG J H, et al.High-resolution detection of quantitative trait loci for seven important yield-related traits in wheat (Triticum aestivumL.) using a high-density SLAF-seq genetic map[J]. BMC genomic data, 2022, 23(1): 37. [39] HAI L, GUO H J, WAGNER C, et al.Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivumL.) genotypes tested under varying environments correspond to QTL in widely different wheat materials[J]. Plant science, 2008, 175(3): 226-232. [40] JIA H Y, WAN H S, YANG S H, et al.Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding[J]. Theoretical and applied genetics, 2013, 126(8): 2123-2139. [41] WU X J, CHENG K, ZHAO R H, et al.Quantitative trait loci responsible for sharp eyespot resistance in common wheat CI12633[J]. Scientific reports, 2017, 7: 11799. [42] YU M, MAO S L, CHEN G Y, et al.QTLs for uppermost internode and spike length in two wheat RIL populations and their affect upon plant height at an individual QTL level[J]. Euphytica, 2014, 200(1): 95-108. [43] REZAEINIA M, MANARLOOEI M, ABDOLSHAHI R.QTL mapping of biomechanical traits related to lodging resistance in bread wheat[J]. Agricultural biotechnology journal,2021,12(4):77-98. [44] 潘婷,胡文静,李东升,等.小麦茎秆实心度对茎秆强度的影响及相关性状QTL分析[J].作物学报,2017,43(1):9-18. [45] 颜丹丹. 小麦抗倒伏相关性状的全基因组关联分析[D].山东泰安:山东农业大学,2019. [46] LI F J, WEN W E, HE Z H, et al.Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers[J]. Theoretical and applied genetics, 2018, 131(9): 1903-1924. [47] CUI F, LI J, DING A M, et al.Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat[J]. Theoretical and applied genetics, 2011, 122(8): 1517-1536. [48] GRIFFITHS S, SIMMONDS J, LEVERINGTON M, et al.Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm[J]. Molecular breeding, 2012, 29(1): 159-171. [49] SEMAGN K,IQBAL M, CHEN H, et al.Physical mapping of QTL associated with agronomic and end-use quality traits in spring wheat under conventional and organic management systems[J]. Theoretical and applied genetics, 2021, 134(11): 3699-3719. [50] TSILO T J, HARELAND G A, SIMSEK S, et al.Genome mapping of kernel characteristics in hard red spring wheat breeding lines[J]. Theoretical and applied genetics, 2010, 121(4): 717-730. [51] XU Y F, LI S S, LI L H, et al.QTL mapping for yield and photosynthetic related traits under different water regimes in wheat[J]. Molecular breeding, 2017, 37(3): 34. [52] ZHAO C H, ZHANG N, WU Y Z, et al.QTL for spike-layer uniformity and their influence on yield-related traits in wheat[J]. BMC genetics, 2019, 20(1): 23. [53] 宋鹏博. 基于50K芯片的小麦茎秆及株型性状的QTL定位[D].陕西杨凌:西北农林科技大学,2021. [54] 汪涛. 小麦茎秆强度主效QTL挖掘及候选基因分析[D].合肥:安徽农业大学,2023. [55] GAYNOR R C.Quantitative trait loci mapping of yield, its related traits, and spike morphology factors in winter wheat (Triticum aestivumL.)[D]. Oregon Corvallis:Oregon State University, 2010. [56] HUANG X Q, CÖSTER H, GANAL M W, et al. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivumL.)[J]. Theoretical and applied genetics, 2003, 106(8): 1379-1389. [57] YANG Y M, WAN H S, YANG F, et al.Mapping QTLs for enhancing early biomass derived fromAegilops tauschiiin synthetic hexaploid wheat[J]. PLoS one, 2020, 15(6): e0234882. [58] ZHANG M X, GAO M G, ZHENG H H, et al.QTL mapping for nitrogen use efficiency and agronomic traits at the seedling and maturity stages in wheat[J]. Molecular breeding, 2019, 39(5): 71. [59] HISAM AL RABBI S M, KUMAR A, MOHAJERI NARAGHI S, et al. Identification of main-effect and environmental interaction QTL and their candidate genes for drought tolerance in a wheat RIL population between two elite spring cultivars[J]. Frontiers in genetics, 2021, 12: 656037. [60] 李嘉豪. 小麦抗倒伏相关性状的全基因组关联分析[D].河北保定:河北农业大学,2020. [61] CUI F, LI J, DING A M, et al.QTL detection of internode length and its component index in wheat using two related RIL populations[J]. Cereal research communications, 2012, 40(3): 373-384. [62] AMALOVA A, ABUGALIEVA S, CHUDINOV V, et al.QTL mapping of agronomic traits in wheat using the UK Avalon × Cadenza reference mapping population grown in Kazakhstan[J]. PeerJ, 2021, 9: e10733. [63] LIU G, JIA L J, LU L H, et al.Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat[J]. Theoretical and applied genetics, 2014, 127(11): 2415-2432. [64] LU Y, XING L P, XING S J, et al.Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivumL.)[J]. Journal of genetics and genomics, 2015, 42(12): 685-698. [65] NARJESI V, MARDI M, HERVAN E M, et al.Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (Triticum aestivumL.) under normal and salt-stress conditions[J]. Plant molecular biology reporter, 2015, 33(6): 2030-2040. [66] SANGWAN S, MUNJAL R, RAM K, et al.QTL mapping for morphological and physiological traits in RILs of spring wheat population of WH1021 × WH711[J]. Journal of environmental biology, 2019, 40(4): 674-682. [67] ZHAI H J, FENG Z Y, LI J, et al.QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivumL.) using a high-density SNP and SSR-based linkage map[J]. Frontiers in plant science, 2016, 7: 1617. [68] LIU D, ZHAO D H, ZENG J Q, et al.Identification of genetic loci for grain yield-related traits in the wheat population Zhongmai 578/Jimai 22[J]. Journal of integrative agriculture, 2023, 22(7): 1985-1999. [69] 刘靖. 小麦抗倒伏相关茎秆性状的QTL定位[D].南京:南京农业大学,2012. [70] 梁子英,李美霞,王竹林,等.小麦株高相关性状的QTL分析[J].西北农业学报, 2014, 23(6): 64-72. [71] 田胜明. 基于55K芯片的小麦抗倒伏性状分析[D].合肥:安徽农业大学,2021. [72] 刘凯. 小麦茎秆强度QTL定位及CAPS标记开发[D].合肥:安徽农业大学,2018. [73] WANG Q G, XIONG H C, GUO H J, et al.Genetic analysis and mapping of dwarf gene without yield penalty in a γ-ray-induced wheat mutant[J]. Frontiers in plant science, 2023, 14: 1133024. [74] DABA S D, TYAGI P, BROWN-GUEDIRA G, et al.Genome-wide association study in historical and contemporary U.S. winter wheats identifies height-reducing loci[J]. The crop journal, 2020, 8(2): 243-251. [75] ASSANGA S O, FUENTEALBA M, ZHANG G R, et al.Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs[J]. PLoS one, 2017, 12(12): e0189669. [76] ERIKSEN L, BORUM F, JAHOOR A.Inheritance and localisation of resistance toMycosphaerella graminicolacausingSeptoria triticiblotch and plant height in the wheat (Triticum aestivumL.) genome with DNA markers[J]. Theoretical and applied genetics, 2003, 107(3): 515-527. [77] GERVAIS L, DEDRYVER F, MORLAIS J Y, et al.Mapping of quantitative trait loci for field resistance toFusarium headblight in an European winter wheat[J]. Theoretical and applied genetics, 2003, 106(6): 961-970. [78] LUO W, MA J, ZHOU X H, et al.Identification of quantitative trait loci controlling agronomic traits indicates breeding potential of Tibetan semiwild wheat (Triticum aestivumssp.tibetanum)[J]. Crop science, 2016, 56(5): 2410-2420. [79] MA J, ZHANG C Y, YAN G J, et al.Identification of QTLs conferring agronomic and quality traits in hexaploid wheat[J]. Journal of integrative agriculture, 2012, 11(9): 1399-1408. [80] PINTO R S, REYNOLDS M P, MATHEWS K L, et al.Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects[J]. Theoretical and applied genetics, 2010, 121(6): 1001-1021. [81] SADEQUE A, TURNER M A.QTL analysis of plant height in hexaploid wheat doubled haploid population[J]. Thai journal of agricultural science, 2010, 2(2): 91-96. [82] TAHMASEBI S, HEIDARI B, PAKNIYAT H, et al.Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivumL.)[J]. Genome, 2017, 60(1): 26-45. [83] THAMBUGALA D, BRÛLÉ-BABEL A L, BLACKWELL B A, et al. Genetic analyses of nativeFusarium headblight resistance in two spring wheat populations identifies QTL near the B1, Ppd-D1, Rht-1, Vrn-1, Fhb1, Fhb2, and Fhb5 loci[J]. Theoretical and applied genetics, 2020, 133(10): 2775-2796. [84] SONG P B, WANG X, WANG X X, et al.Application of 50K chip-based genetic map to QTL mapping of stem-related traits in wheat[J]. Crop & pasture science, 2021, 72(2): 105-112. [85] 郭会君. 小麦茎秆强度及其相关性状的QTL分析[D].北京:中国农业科学院,2002. [86] ZHOU C Y, XIONG H C, LI Y T, et al.Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivumL.)[J]. Journal of integrative agriculture, 2020,19(7): 1721-1730. [87] ADDISON C K, MASON R E, BROWN-GUEDIRA G, et al.QTL and major genes influencing grain yield potential in soft red winter wheat adapted to the southern United States[J]. Euphytica, 2016, 209(3): 665-677. [88] BAI C H, LIANG Y L, HAWKESFORD M J.Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat[J]. Journal of experimental botany, 2013, 64(6): 1745-1753. [89] CHEN D, WU X Y, WU K, et al.Novel and favorable genomic regions for spike related traits in a wheat germplasm pubing 3504 with high grain number per spike under varying environments[J]. Journal of integrative agriculture, 2017, 16(11): 2386-2401. [90] DEWITT N, GUEDIRA M, LAUER E, et al.Characterizing the oligogenic architecture of plant growth phenotypes informs genomic selection approaches in a common wheat population[J]. BMC genomics, 2021, 22(1): 402. [91] GUAN P F, LU L H, JIA L J, et al.Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivumL.)[J]. Frontiers in plant science, 2018, 9: 529. [92] LI Y L, GAO J, ZHANG R Z, et al.Identification of new QTL for yield-related traits in Chinese landrace and elite wheat varieties through a genome-wide linkage mapping[J]. Euphytica, 2020, 216(8): 124. [93] MASON R E, HAYS D B, MONDAL S, et al.QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions[J]. Euphytica, 2013, 194(2): 243-259. [94] SHUKLA S, SINGH K, PATIL R V, et al.Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivumL.)[J]. Euphytica, 2015, 203(2): 449-467. [95] XU Y F, WANG R F, TONG Y P, et al.Mapping QTLs for yield and nitrogen-related traits in wheat:Influence of nitrogen and phosphorus fertilization on QTL expression[J]. Theoretical and applied genetics, 2014, 127(1): 59-72. [96] XU T, BIAN N F, WEN M X, et al.Characterization of a common wheat (Triticum aestivumL.) high-tillering dwarf mutant[J]. Theoretical and applied genetics, 2017, 130(3): 483-494. [97] XU Q, XU F C, QIN D D, et al.Molecular mapping of QTLs conferringFusariumHead blight resistance in Chinese wheat cultivar Jingzhou 66[J]. Plants, 2020, 9(8): 1021. [98] ZOU J, SEMAGN K, IQBAL M, et al.Mapping QTLs controlling agronomic traits in the ‘Attila’ × ‘CDC go’ spring wheat population under organic management using 90K SNP array[J]. Crop science, 2017, 57(1): 365-377. [99] CHEN H, BEMISTER D H, IQBAL M, et al.Mapping genomic regions controlling agronomic traits in spring wheat under conventional and organic managements[J]. Crop science, 2020, 60(4): 2038-2052. [100] ZHANG N, FAN X L, CUI F, et al.Characterization of the temporal and spatial expression of wheat (Triticum aestivumL.) plant height at the QTL level and their influence on yield-related traits[J]. Theoretical and applied genetics,2017,130(6):1235-1252. [101] ZHANG Y X, LIU H, YAN G J.Characterization of near-isogenic lines confirmed QTL and revealed candidate genes for plant height and yield-related traits in common wheat[J]. Molecular breeding, 2021, 41(1): 4. [102] ALI M L, BAENZIGER P S, AL AJLOUNI Z, et al.Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations[J]. Crop science, 2011, 51(2): 553-566. [103] EL-FEKI W M, BYRNE P F, REID S D, et al. Mapping quantitative trait loci for agronomic traits in winter wheat under different soil moisture levels[J]. Agronomy, 2018, 8(8): 133. [104] GRIFFITHS S, WINGEN L, PIETRAGALLA J, et al.Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm[J]. PLoS one, 2015, 10(3): e0118847. [105] MARTINEZ A F, LISTER C, FREEMAN S, et al.Resolving a QTL complex for height, heading, and grain yield on chromosome 3A in bread wheat[J]. Journal of experimental botany, 2021, 72(8): 2965-2978. [106] MENGISTU N, BAENZIGER P S, ESKRIDGE K M, et al.Validation of QTL for grain yield-related traits on wheat chromosome 3A using recombinant inbred chromosome lines[J]. Crop science, 2012, 52(4): 1622-1632. [107] MOHLER V, ALBRECHT T, CASTELL A, et al.Considering causal genes in the genetic dissection of kernel traits in common wheat[J]. Journal of applied genetics, 2016, 57(4): 467-476. [108] RUSTGI S, SHAFQAT M N, KUMAR N, et al.Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A: Bridging gaps between QTLs and underlying genes[J]. PLoS one, 2013, 8(7): e70526. [109] 许小宛. 小麦生长发育及茎秆相关性状的QTL定位[D].陕西杨凌:西北农林科技大学,2019. [110] 王剑锋. 小麦茎秆强度相关位点鉴定及CAPS标记开发[D].合肥:安徽农业大学,2019. [111] CARTER A H, GARLAND-CAMPBELL K, KIDWELL K K.Genetic mapping of quantitative trait loci associated with important agronomic traits in the spring wheat (Triticum aestivumL.) cross ‘louise’ × ‘penawawa’[J]. Crop science, 2011, 51(1): 84-95. [112] DAOURA B G, CHEN L, DU Y Y, et al.Genetic effects of dwarfing gene Rht-5 on agronomic traits in common wheat (Triticum aestivumL.) and QTL analysis on its linked traits[J]. Field crops research, 2014, 156: 22-29. [113] HILL C B, TAYLOR J D, EDWARDS J, et al.Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology[J]. Plant science, 2015, 233: 143-154. [114] ZHANG G R, MERGOUM M, KIANIAN S, et al.Genetic relationship and QTL association between kernel shattering and agronomic traits in wheat[J]. Crop science, 2009, 49(2): 451-458. [115] WANG C J, ZHANG L L, XIE Y D, et al.Agronomic trait analysis and genetic mapping of a new wheat semidwarf gene rht-SN33d[J]. International journal of molecular sciences, 2023, 24(1): 583. [116] CHEN Z Y, CHENG X J, CHAI L L, et al.Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivumL.)[J]. Theoretical and applied genetics, 2020, 133(1): 149-162. [117] LIAO X Z,WANG J,ZHOU R H,et al.Mining favorable alleles of QTLs conferring thousand-grain weight from synthetic wheat[J]. Acta agronomica sinica, 2008, 34(11): 1877-1884. [118] ISHAM K, WANG R, ZHAO W D, et al.QTL mapping for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars[J]. Theoretical and applied genetics, 2021, 134(7): 2079-2095. [119] CIECHANOWSKA I,SEMAGN K,et al.Quantitative trait locus mapping of rust resistance and agronomic traits in spring wheat[J]. Canadian journal of plant science, 2022, 102(6): 1139-1150. [120] HASSAN M A, YANG M J, FU L P, et al.Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat[J]. Plant methods,2019,15(1):37. [121] HUANG X Q, CLOUTIER S, LYCAR L, et al.Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivumL.)[J]. Theoretical and applied genetics, 2006, 113(4): 753-766. [122] LIU G, XU S B, NI Z F, et al.Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (Triticum aestivumL.) and spelt wheat (Triticum speltaL.)[J]. Chinese science bulletin, 2011, 56(18): 1897-1903. [123] BOKORE F E, CUTHBERT R D, KNOX R E, et al.Main effect and epistatic QTL affecting spike shattering and association with plant height revealed in two spring wheat (Triticum aestivumL.) populations[J]. Theoretical and applied genetics,2022, 135(4): 1143-1162. [124] GAO F M, WEN W E, LIU J D, et al.Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese spring[J]. Frontiers in plant science, 2015, 6: 1099. [125] GUO Y, DU Z Y, CHEN J, et al.QTL mapping of wheat plant architectural characteristics and their genetic relationship with seven QTLs conferring resistance to sheath blight[J]. PLoS one, 2017, 12(4): e0174939. [126] MARZA F, BAI G H, CARVER B F, et al.Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark[J]. Theoretical and applied genetics, 2006, 112(4): 688-698. [127] MCCARTNEY C A, SOMERS D J, HUMPHREYS D G, et al.Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’[J]. Genome, 2005, 48(5): 870-883. [128] SANNEMANN W, LISKER A, MAURER A, et al.Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800[J]. BMC genomics, 2018, 19(1): 559. [129] SHIRDELMOGHANLOO H, TAYLOR J D, LOHRASEB I, et al.A QTL on the short arm of wheat (Triticum aestivumL.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling[J]. BMC plant biology, 2016, 16(1): 100. [130] SINGH A, KNOX R E, DEPAUW R M, et al.Genetic mapping of common bunt resistance and plant height QTL in wheat[J]. Theoretical and applied genetics, 2016, 129(2): 243-256. [131] TRINI J, MAURER H P, NEUWEILER J E, et al.Identification and fine-mapping of quantitative trait loci controlling plant height in central European winter triticale(×Triticosecale Wittmack)[J].Plants, 2021, 10(8): 1592. [132] WANG Z Q, HU H Y, JIANG X J, et al.Identification and validation of a novel major quantitative trait locus for plant height in common wheat (Triticum aestivumL.)[J]. Frontiers in genetics, 2020, 11: 602495. [133] YUAN Y Y,GAO M G,ZHANG M X,et al.QTL mapping for phosphorus efficiency and morphological traits at seedling and maturity stages in wheat[J]. Frontiers in plant science,2017,8:614. [134] GAO L, MENG C S, YI T F, et al.Genome-wide association study reveals the genetic basis of yield- and quality-related traits in wheat[J]. BMC plant biology, 2021, 21(1): 144. [135] HU P, ZHENG Q, LUO Q L, et al.Genome-wide association study of yield and related traits in common wheat under salt-stress conditions[J]. BMC plant biology, 2021, 21(1): 27. [136] DRAEGER R, GOSMAN N, STEED A, et al.Identification of QTLs for resistance toFusarium headblight, DON accumulation and associated traits in the winter wheat variety Arina[J]. Theoretical and applied genetics, 2007, 115(5): 617-625. [137] LOZADA D N, MASON R E, ALI BABAR M, et al.Association mapping reveals loci associated with multiple traits that affect grain yield and adaptation in soft winter wheat[J]. Euphytica, 2017, 213(9): 222. [138] CHAI L L, CHEN Z Y, BIAN R L, et al.Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivumL.)[J]. Theoretical and applied genetics, 2018, 131(12): 2621-2637. [139] GARCIA M, ECKERMANN P, HAEFELE S, et al.Genome-wide association mapping of grain yield in a diverse collection of spring wheat (Triticum aestivumL.) evaluated in southern Australia[J]. PLoS one, 2019, 14(2): e0211730. [140] HE X Y, LILLEMO M, SHI J R, et al.QTL characterization ofFusariumHead blight resistance in CIMMYT bread wheat line Soru#1[J]. PLoS one, 2016, 11(6): e0158052. [141] LI X M, XIA X C, XIAO Y G, et al.QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments[J]. Crop & pasture science, 2015, 66(7): 660-670. [142] PEREZ-LARA E,SEMAGN K, CHEN H, et al.QTLs associated with agronomic traits in the cutler × AC Barrie spring wheat mapping population using single nucleotide polymorphic markers[J]. PLoS one, 2016, 11(8): e0160623. [143] SHERMAN J D, MARTIN J M, BLAKE N K, et al.Genetic basis of agronomic differences between a modern and a historical spring wheat cultivar[J]. Crop science, 2014, 54(1): 1-13. [144] WU X S, CHANG X P, JING R L.Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments[J]. PLoS one, 2012, 7(2): e31249. [145] BUERSTMAYR M, BUERSTMAYR H.Comparative mapping of quantitative trait loci forFusarium headblight resistance and anther retention in the winter wheat population Capo × Arina[J]. Theoretical and applied genetics, 2015, 128(8): 1519-1530. [146] HU J M, WANG X Q, ZHANG G X, et al.QTL mapping for yield-related traits in wheat based on four RIL populations[J]. Theoretical and applied genetics, 2020, 133(3): 917-933. [147] KALIH R, MAURER H P, HACKAUF B, et al.Effect of a rye dwarfing gene on plant height, heading stage, andFusarium headblight inTriticale(×TriticosecaleWittmack)[J]. Theoretical and applied genetics, 2014, 127(7): 1527-1536. [148] YAN A,NING S R,GENG H W,et al.Quantitative trait locus (QTL) mapping for common wheat plant heights based on unmanned aerial vehicle images[J]. Agronomy,2023,13(8): 2088. [149] FOWLER D B, N’DIAYE A, LAUDENCIA-CHINGCUANCO D, et al. Quantitative trait loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivumL.)[J]. PLoS one, 2016, 11(3): e0152185. [150] SPIELMEYER W,HYLES J, JOAQUIM P, et al.A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height[J]. Theoretical and applied genetics, 2007, 115(1): 59-66. [151] GUO B J, JIN X M, CHEN J C, et al.ATP-dependent DNA helicase (TaDHL), a novel reduced-height (rht) gene in wheat[J]. Genes, 2022, 13(6): 979. [152] MOHAN A, GRANT N P, SCHILLINGER W F, et al.Characterizing reduced height wheat mutants for traits affecting abiotic stress and photosynthesis during seedling growth[J]. Physiologia plantarum, 2021, 172(1): 233-246. [153] HEDDEN P.The genes of the green revolution[J]. Trends in genetics, 2003, 19(1): 5-9. [154] BOROJEVIC K, BOROJEVIC K.The transfer and history of “reduced height genes” (rht) in wheat from Japan to Europe[J]. Journal of heredity, 2005, 96(4): 455-459. [155] XU H Y, SUN H, DONG J J, et al.The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves wheat grain yields[J]. Theoretical and applied genetics, 2022, 135(8): 2907-2923. [156] LI A L, HAO C Y, WANG Z Y, et al.Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield[J]. Molecular plant, 2022, 15(3): 504-519. [157] SUN H,ZHANG W P, WU Y Z, et al.The circadian clock gene, TaPRR1, is associated with yield-related traits in wheat (Triticum aestivumL.)[J]. Frontiers in plant science, 2020, 11: 285. [158] ZHANG Y, LIANG Z, ZONG Y, et al.Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA[J]. Nature communications, 2016, 7: 12617. [159] SI X M, WANG W X, WANG K, et al.A sheathed spike gene, TaWUS-like inhibits stem elongation in common wheat by regulating hormone levels[J]. International journal of molecular sciences, 2021, 22(20): 11210. [160] YAN B Q, YANG Z J, HE G H, et al.The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth[J]. Plant communications, 2021,2(6): 100245. [161] LI J H, XIE L N, TIAN X L, et al.TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat[J]. The plant journal,2021,108(3):829-840. [162] FU M X, LIU S S, CHE Y Q, et al.Genome-editing of a circadian clock gene TaPRR95 facilitates wheat peduncle growth and heading date[J]. Journal of genetics and genomics,2024, 51(10):1101-1110. [163] KONG X C, WANG F, WANG Z Y, et al.Grain yield improvement by genome editing ofTaARF12that decoupled peduncle andRachisdevelopment trajectoriesviadifferential regulation of gibberellin signalling in wheat[J].Plant biotechnology journal,2023,21(10): 1990-2001. |
| [1] | 甘甜, 蔡凯, 涂泽琰, 汪超. 水稻雄性不育突变体Osps-2基因的遗传定位[J]. 湖北农业科学, 2025, 64(9): 229-237. |
| [2] | 邓克林, 卢自华, 李艳娇, 杨远霄, 黎超, 陈水莲, 杨红丽, 单志慧, 郝青南, 陈海峰. 大豆花叶病毒武汉分离物全基因测序及系统进化分析[J]. 湖北农业科学, 2025, 64(9): 238-245. |
| [3] | 余鸿, 高忠奎, 贺梁琼, 韩柱强, 黄志鹏, 唐荣华, 蒋菁, 李博胤. 具有野生亲缘的花生新品种桂花62的选育及分子鉴定[J]. 湖北农业科学, 2025, 64(8): 31-34. |
| [4] | 韩永亮, 方路斌, 罗河月, 崔江慧, 郭群, 常金华. 测交鉴定结合数量性状遗传分析创制糯高粱保持系资源[J]. 湖北农业科学, 2025, 64(8): 54-61. |
| [5] | 田爽, 毕宇, 郭燕, 吴皓琼, 叶阳, 刘佳宁, 朱加楠. 金耳T-1的生物学特性及全基因组测序分析[J]. 湖北农业科学, 2025, 64(8): 152-159. |
| [6] | 胡慧, 门瑞龙, 赵明卓, 孙铭若, 徐俊英, 刘海洋, 杨隆维, 田雨, 余为仆, 邱先进. 野生大麦EIL基因家族成员鉴定与表达分析[J]. 湖北农业科学, 2025, 64(8): 226-229. |
| [7] | 崔文礼, 黄建华, 于学奎, 沈家成, 高景春. 稳产抗倒伏小麦品种东昌212的选育及特性分析[J]. 湖北农业科学, 2025, 64(7): 1-4. |
| [8] | 张小娟, 刘倩倩, 王立峰, 凌冬, 张鹏飞. 60个小麦品种(系)赤霉病抗性鉴定与优异种质筛选[J]. 湖北农业科学, 2025, 64(7): 5-9. |
| [9] | 乔祥梅, 王志龙, 刘列, 程加省, 黄廷芝, 程耿, 李红艳, 夏艳波, 王志伟. 西南麦区不同小麦品种(系)氮效率利用评价[J]. 湖北农业科学, 2025, 64(7): 10-14. |
| [10] | 崔文礼, 邓新龙, 杨晨, 代雪晴, 郑文寅. 28份彩色小麦种质主要品质性状评价[J]. 湖北农业科学, 2025, 64(7): 15-19. |
| [11] | 刘文英, 左研熙, 何舒萍, 杨璞, 向蓓蓓. 多根紫萍SpLAR基因的克隆、表达分析及表达载体构建[J]. 湖北农业科学, 2025, 64(7): 120-127. |
| [12] | 崔长珍, 霍彦波, 张思宇, 柴乖强, 鲍亮亮, 段义忠. 深秋红沙棘NHX1基因克隆与生物信息学分析[J]. 湖北农业科学, 2025, 64(7): 192-197. |
| [13] | 向冲, 陈璨. 低深度测序数据的基因型填充优化与回归模型性能分析[J]. 湖北农业科学, 2025, 64(7): 203-206. |
| [14] | 崔文礼, 代雪晴, 杨晨, 邓新龙, 于学奎, 郑文寅, 黄建华. 丰产半冬性小麦皖农116的选育及相关特征[J]. 湖北农业科学, 2025, 64(6): 17-20. |
| [15] | 王培云, 赵文丽, 马骥, 邓丽, 李阳, 郭敏杰, 申卫国, 姚潜, 任丽. 高产花生品种开农80的耐盐性鉴定及机制解析[J]. 湖北农业科学, 2025, 64(6): 21-27. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||