湖北农业科学 ›› 2024, Vol. 63 ›› Issue (8): 47-53.doi: 10.14088/j.cnki.issn0439-8114.2024.08.009

• 图像图形识别 • 上一篇    下一篇

遮挡条件下基于生成对抗网络的苹果果实检测方法

刘帅, 肖奕同, 张吴平, 李富忠, 王宦臣   

  1. 山西农业大学软件学院,山西 太谷 030801
  • 收稿日期:2022-11-21 出版日期:2024-08-25 发布日期:2024-09-05
  • 通讯作者: 张吴平(1973-),男,山西长治人,教授,研究生导师,博士,主要从事植物表型学、旱作有机农业等领域的研究,(电话)15935664481(电子信箱)zwping@126.com。
  • 作者简介:刘 帅(1998-),男,山西吕梁人,在读硕士研究生,研究方向为智慧农业、机器视觉,(电话)15122126785(电子信箱)975354266@qq.com。
  • 基金资助:
    国家重点研发计划项目(2021YFD1901101); 山西省基础研究计划项目(202103021224123); 山西省科技重大专项计划“揭牌挂帅”项目(202101140601026)

Apple fruit detection method based on generative adversarial networks under occlusion conditions

LIU Shuai, XIAO Yi-tong, ZHANG Wu-ping, LI Fu-zhong, WANG Huan-chen   

  1. School of Software, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2022-11-21 Published:2024-08-25 Online:2024-09-05

摘要: 针对苹果果实在自然环境条件下易受到枝干、树叶等障碍物的遮挡,导致识别准确率降低的问题,引入了一种融合生成对抗网络(Generative adversarial networks,GAN)的苹果果实检测方法。使用Faster RCNN模型对苹果果实和遮挡物进行检测,对受遮挡的苹果果实图像添加掩码,然后用生成对抗网络对受遮挡的苹果果实图像进行修复,最后将修复的图像传输给目标检测模型进行识别定位。结果表明,融合生成对抗网络的GAN-Faster RCNN联合模型,对大面积遮挡的苹果果实,在测试集上的平均精度均值(Mean average precision,mAP)达73.62%,较原模型提高了8.76个百分点;对小面积遮挡的苹果果实,在测试集上的平均精度均值达90.67%,较原模型提高了9.54个百分点,解决了传统目标检测方法在遮挡条件下苹果果实识别准确率低的问题。

关键词: 苹果, 目标检测, 遮挡, Faster RCNN, 生成对抗网络(GAN)

Abstract: Aiming at the problem that apple fruit was easily blocked by branches, leaves, and other obstacles in the natural environment, which led to the reduction of recognition accuracy, a method of apple fruit detection based on the fusion of generative adversarial networks (GAN) was introduced. The Faster RCNN model was used to detect the apple fruit and occlusion, mask the occluded apple fruit image, and then repair the occluded apple fruit image with the generative adversarial networks. Finally, the repaired image was transmitted to the target detection model for identification and positioning. The results showed that the combined model of GAN-Faster RCNN, which fused generative adversarial networks, had an mAP of 73.62% on the test set for apple fruits with a large area of occlusion, which was 8.76 percentage points higher than the original model; for the apple fruit with a small area of occlusion, the average precision on the test set was 90.67%, which was 9.54 percentage points higher than the original model. It solved the problem of low accuracy of apple fruit recognition under occlusion conditions with traditional target detection methods.

Key words: apple, target detection, occlusion, Faster RCNN, generative adversarial networks(GAN)

中图分类号: