[1] BRAUN J,ROCKEN C,WARE R.Validation of line-of-sight water vapor measurements with GPS[J].Radio science,2001,36:259-472. [2] 李国平,黄丁发,郭洁,等.地基GPS气象学[M].北京:科学出版社,2010.148-150. [3] WANG H,HE J,WEI M,et al.Synthesis analysis of one severe convection precipitation event in Jiangsu using ground-gased GPS technology[J].Atmosphere,2015,6:908-927. [4] BEVIS M,BUSINGER S,HERRING T A,et al.GPS meteorology:Remote sensing of atmosphere water vapor using the global positioning system[J].Journal of geophysical research,1992,97(D14):15787-15801. [5] 罗宇,罗林艳,范嘉智,等.天顶静力延迟模型对GPS可降水量反演的影响分析及改进[J].测绘工程,2018,27(8):13-17. [6] 罗宇,罗林艳,吕冠儒.加权平均温度模型对GPS水汽反演的影响[J].测绘科学,2018,43(9):6-9,15. [7] PRIEGO E,SECO A,JONES J,et al.Heavy rain analysis based on GNSS water vapour content in the Spanish Mediterranean area[J].Meteorological application,2016,23:640-649. [8] 罗林艳,罗宇,段思汝,等.郴州地区GPS可降水量精度及其变化特征[J].湖北农业科学,2018,57(11):14-18. [9] 杨璐瑛,刘畅,杨成芳,等.不同天气系统影响下强降雨过程GPS可降水量变化特征对比[J].干旱气象,2018,36(3):475-482. [10] 杨景梅,邱金桓.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究[J].大气科学,2002(1):9-22. [11] 李超,魏合理,刘厚通,等.整层大气水汽含量与地面水汽压相关性的统计研究[J].武汉大学学报(信息科学版),2008,33(11):1170-1173. [12] 李颖,张俊东,罗鹏.大气可降水量估算模型研究[J].气象与环境科学,2013,36(2):21-25. [13] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural computation,1997,9(8):1735-1780. [14] ZHENG D Y,HU W S,WANG J,et al.Research on regional zenith tropospheric delay based on neural network technology[J].Survey review,2014,343(47):286-295. [15] DING M.A neural network model for predicting weighted mean temperature[J].Journal of geodesy,2018.doi:10.1007/s 00190-018-1114-6. [16] WANG H,WEI M,ZHOU S H.A feasibility study for the construction of an atmospheric precipitable water vapor model based on the neural network technology[J].Desalination and water treatment,2014,52(37-39):7412-7421. [17] QING X,NIU Y.Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J].Energy,2018,148:461-468. [18] 徐尧强,方乐恒,赵冬华,等.基于LSTM神经网络的用电量预测[J].电力大数据,2017,20(8):25-29. [19] ZHANG D,KABUKA M R.Combining weather condition data to predict traffic flow:A GRU-based deep learning approach[J].IET intelligent transport systems,2018,12(7):578-585. [20] ADIB A,KALAEE M M K,SHOUSHTARI M M,et al. Using of gene expression programming and climatic data for forecasting flow discharge by considering trend, normality,and stationarity analysis[J].Arabian journal of geosciences,2017,10(9):208. [21] 许家琦,李颜伶,舒红.中国东北地区气象数据的空间平稳性检验[J].华中师范大学学报(自然科学版),2014,48(2):279-283. |