[1] 周涛, 潘剑君, 韩涛, 等. 基于多时相合成孔径雷达与光学影像的冬小麦种植面积提取[J]. 农业工程学报,2017,33(10): 215-221. [2] 李长春, 陈伟男, 王宇, 等. 基于多源Sentinel数据的县域冬小麦种植面积提取[J]. 农业机械学报, 2021,52(12):207-215. [3] 王利民, 刘佳, 杨福刚, 等. 基于GF-1/WFV数据的冬小麦条锈病遥感监测[J]. 农业工程学报, 2017, 33(20): 153-160. [4] LIU L,HUANG J F,XIONG Q X,et al.Optimal MODIS data processing for accurate multi-year paddy rice area mapping in China[J]. Giscience & remote sensing, 2020, 57(5): 687-703. [5] SASS R L,CICERONE R J.Photosynthate allocations in rice plants: Food production or atmospheric methane?[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19): 11993-11995. [6] YAN X, AKIYAMA H, YAGI K, et al.Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines[J]. Global biogeochemical cycles, 2009, 23(2): 1-15. [7] TAO F, HAYASHI Y, ZHANG Z, et al.Global warming, rice production, and water use in China: Developing a probabilistic assessment[J]. Agricultural and forest meteorology,2007,148(1):94-110. [8] LI C S, QIU J J, FROLKING S, et al.Reduced methane emissions from large‐scale changes in water management of China's rice paddies during 1980—2000[J]. Geophysical research letters, 2002, 29(20):1-4. [9] LU M, WU W, YOU L, et al.A cultivated planet in 2010-Part 1: The global synergy cropland map[J]. Earth system science data, 2020, 12(3): 1-33. [10] DONG J W, XIAO X M.Evolution of regional to global paddy rice mapping methods: A review[J]. Isprs journal of photogrammetry and remote sensing, 2016, 119: 214-227. [11] CAI Y, GUAN K, PENG J, et al.A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach[J]. Remote sensing of environment,2018, 210: 35-47. [12] BROWN J C, KASTENS J H, COUTINHO A C, et al.Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data[J]. Remote sensing of environment, 2013, 130: 39-50. [13] ATZBERGER C, REMBOLD F.Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and Neural Nets[J]. Remote sensing, 2013, 5(3): 1335-1354. [14] 马玥, 姜琦刚, 孟治国, 等. 基于随机森林算法的农耕区土地利用分类研究[J]. 农业机械学报, 2016, 47(1): 297-303. [15] 赵叶, 李存军, 周静平, 等. 基于多时相遥感数据和HSV变换的越冬前冬小麦面积提取[J]. 中国农业信息, 2019, 31(6): 21-28. [16] 刘昊. 基于Sentinel-2影像的河套灌区作物种植结构提取[J].干旱区资源与环境, 2021, 35(2): 88-95. [17] 史博太, 常庆瑞, 崔小涛, 等. 基于Sentinel-2多光谱数据和机器学习算法的冬小麦LAI遥感估算[J]. 麦类作物学报, 2021, 41(6):752-761. [18] 尹捷, 周雷雷, 李利伟, 等. 多源遥感数据小麦识别及长势监测比较研究[J]. 遥感技术与应用, 2021, 36(2): 332-341. [19] 李方杰,任建强,吴尚蓉,等. NDVI时序相似性对冬小麦种植面积总量控制的制图精度影响[J]. 农业工程学报,2021,37(9):127-139. [20] 杨泽康, 田佳, 李万源, 等. 黄河流域生态环境质量的时空格局与演变趋势[J]. 生态学报, 2021(19):1-10. [21] 何昭欣, 张淼, 吴炳方, 等. Google Earth Engine支持下的江苏省夏收作物遥感提取[J]. 地球信息科学学报, 2019, 21(5): 752-766. [22] ANDRII S, MYKOLA L, NATALIIA K, et al.Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping[J]. Frontiers in earth science, 2017, 17: 1-10. [23] DONG J, XIAO X, MENARGUEZ M A, et al.Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote sensing of environment, 2016, 185: 142-154. [24] 邹大伟, 李孝玲, 康瑞存, 等. 基于Google Earth Engine的土地覆盖分类方法研究[J]. 测绘与空间地理信息, 2021, 44(S1): 100-105. [25] 宋善允. 河北气候特征及气候资源[M]. 石家庄: 河北科学技术出版社, 2016.3-4. [26] XU F, LI Z, ZHANG S, et al.Mapping winter wheat with combinations of temporally aggregated Sentinel-2 and Landsat-8 Data in Shandong Province, China[J]. Remote sensing,2020,12(12): 1-19. [27] WERFF H V D, MEER F V D. Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing[J]. Multidisciplinary digital publishing institute, 2016, 8(11): 1-16. [28] 郭交, 朱琳, 靳标. 基于Sentinel-1和Sentinel-2数据融合的农作物分类[J]. 农业机械学报, 2018, 49(4):192-198. [29] 吴炜,骆剑承,沈占锋,等. 分类线性回归的Landsat影像去云方法[J]. 武汉大学学报(信息科学版),2013,38(8):983-987. [30] 裴傲, 陈桂芬, 李昊玥, 等. 改进CGAN网络的光学遥感图像云去除方法[J]. 农业工程学报, 2020, 36(14): 194-202. [31] HUETE A,DIDAN K,MIURA T,et al.Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote sensing of environment, 2002, 83(1): 195-213. [32] JIANG Z, HUETE A R, DIDAN K, et al.Development of a two-band enhanced vegetation index without a blue band[J]. Remote sensing of environment, 2008, 112(10): 3833-3845. [33] 王学,李秀彬,谈明洪,等. 华北平原2001—2011年冬小麦播种面积变化遥感监测[J]. 农业工程学报,2015,31(8):190-199. [34] 王云秀, 张文宗, 姚树然, 等. 利用MODIS数据监测河北省冬小麦种植信息[J]. 遥感技术与应用, 2006, 21(2):149-153. [35] GORELICK N,HANCHER M,DIXON M, et al.Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote sensing of environment, 2017, 202:18-27. [36] LI P, HAOMING X, JIA Y, et al.Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine[J]. International journal of applied earth observations and geoinformation, 2021, 102:102376. [37] CHONG L, HUAN-JUN L, LÜ-PING L, et al.Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine[J]. Journal of integrative agriculture, 2021, 20(7): 1944-1957. |