[1] 周兰姝. 我国老龄化背景下残疾态势分析及基于健康老龄化理论的预防策略思考[J].解放军护理杂志, 2022,39(1):1-3. [2] PARTRIDGE L,FUENTEALBA M,KENNEDY B K.The quest to slow ageing through drug discovery[J].Nature reviews drug discovery,2020,19(8):513-532. [3] SHEN C Y,JIANG J G,YANG L,et al.Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: Pharmacological mechanisms and implications for drug discovery[J].British journal of pharmacology,2017,174(11):1395-1425. [4] 国家药典委员会.中华人民共和国药典(一部2020年版)[M].北京:中国医药科技出版社,2020.319. [5] 任洪民,邓亚羚,张金莲,等.药用黄精炮制的历史沿革、化学成分及药理作用研究进展[J].中国中药杂志, 2020,45(17):4163-4182. [6] 陶爱恩,赵飞亚,钱金栿,等.黄精属植物治疗肾精亏虚相关疾病的本草学和药理作用与药效物质研究进展[J].中草药,2021,52(5):1536-1548. [7] 张续蓝. 基于BDNF-TrkB信号途径探讨黄精改善自然衰老大鼠认知功能障碍的作用[D].湖北宜昌:三峡大学, 2021. [8] 秦臻,韦正新,宰青青,等.黄精降低活性氧水平促进衰老内皮祖细胞功能的研究[J].中国药理学通报, 2019,35(1):123-127. [9] 秦臻,韦正新,许键炜.黄精对衰老大鼠内皮祖细胞DNA损伤检测点ATM/ATR通路的影响[J].中药新药与临床药理,2019,30(5):529-534. [10] ZHENG S Y.Protective effect of Polygonatum sibiricum polysaccharide on D-galactose-induced aging rats model[J].Scientific reports,2020,10(1):2246. [11] MA W J,WEI S S,PENG W J,et al. Antioxidant effect of polygonatum sibiricum polysaccharides in D-galactose-induced heart aging mice[J/OL].BioMed research international,2021,http://doi.org/10.1155/2021/6688855. [12] 刘露露,李洪宇,苑广信.黄精多糖对D-半乳糖诱导衰老小鼠学习和记忆水平的影响[J].北华大学学报(自然科学版),2021,22(2):192-197. [13] 高凤凤,裴艳玲,任越,等.基于网络药理学与分子对接技术研究黄精抗动脉粥样硬化的作用机制[J].药学学报,2020, 55(11):2642-2650. [14] 刘玲,李春楠,兰梦,等.基于体外药效学结合网络药理学和分子对接对人参-桑椹改善骨质疏松的机制研究[J].食品工业科技,2021,42(20):1-13. [15] LI Z,ZHANG Z K,REN Y K,et al.Aging and age-related diseases: From mechanisms to therapeutic strategies[J].Biogerontology,2021,22(2):165-187. [16] 段丹丹,高丽,王珂欣,等.黄芩素通过抗氧化应激延长果蝇寿命的机制[J].药学学报,2016,51(9): 1401-1406. [17] 王珂欣,高丽,段丹丹,等.基于1H-NMR代谢组学的黄芩素干预D-半乳糖致衰老大鼠作用研究[J].中草药,2017,48(3):511-518. [18] 李爽,刘璐,胡宝荣,等.黄芩素延缓大鼠心肌衰老的作用及机制[J].中医药学报,2017,45(6):57-61. [19] GAO L,LI J Q,ZHOU Y Z,et al.Effects of baicalein on cortical proinflammatory cytokines and the intestinal microbiome in senescence accelerated mouse prone 8[J].ACS chemical neuroscience,2018,9(7):1714-1724. [20] 郑文鸽. 基于衰老相关分泌表型(SASP)研究黄芩素抑制H2O2诱导星形胶质细胞衰老的作用和机制[D]. 太原:山西大学,2021. [21] 王爱华. 四种甘草黄酮化合物捕获体内自由基反应机理的理论研究[D].哈尔滨:哈尔滨理工大学,2018. [22] 姚秋会,贺桂琼,骆世芳,等.甘草素对去卵巢APP/PS1双转基因小鼠的保护作用初探[J].基因组学与应用生物学,2018, 37(3):1110-1116. [23] 尚东胜. 诱导正常细胞衰老的SASP因子的筛选及相关机制研究[D].江苏镇江:江苏大学,2021. [24] GRUNEWALD M,KUMAR S,SHARIFE H,et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span[J].Science,2021,373(6554):eabc8479. [25] SALMINEN A,KAARNIRANTA K,KAUPPINEN A.Hypoxia-inducible histone lysine demethylases: Impact on the aging process and age-related diseases[J].Aging and disease,2016,7(2):180-200. [26] GARDINI E S,CHEN G G,FIACCO S,et al.Differential ESR1 promoter methylation in the peripheral blood-findings from the women 40+ healthy aging study[J].International journal of molecular medicine,2020,21(10):3654. [27] 李慧敏. STAT3调控的自噬在血管紧张素Ⅱ诱导的肾小管上皮细胞衰老过程中的作用及氯沙坦对其的影响[D].沈阳:中国医科大学,2021. [28] SHAMALNASAB M,DHAOUI M,THONDAMAL M,et al.HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1[J].Aging,2017,9(7):1745-1769. [29] 郭雨声,张如意,贾舒婷,等.原癌基因Ras诱导的衰老与逃逸衰老机制的研究进展[J].生物化学与生物物理进展,2016, 43(7):652-660. [30] 戈杰,周培培,徐天舒,等.IGF1通过PI3K-AKT通路调控2型糖尿病患者颌骨改建的体外机制研究[J]. 口腔医学研究,2020,36(12):1157-1161. [31] 牛海名,李建伟,陈妙莲,等.外源性硫化氢通过PI3K/Akt/eNOS通路改善过氧化氢诱导的人脐静脉内皮细胞衰老[J].中山大学学报(医学科学版),2021,42(4):535-542. [32] 鲁晴,谭海涛,韦灿燊,等.miR-96-5p靶向FOXO1调节成骨细胞衰老的作用[J].实用医学杂志,2019, 35(17):2677-2682. [33] 郭晗,张本斯,施荣杰,等.PI3K/Akt诱导激活FOXO3a可防止TNF-α诱导的GnRH下降[J].解剖学研究,2021,43(1):20-25. [34] 吴平平,胡文龙,殷嫦嫦,等.FOXO4通过抑制凋亡维持人脐带间充质干细胞衰老[J].生理学报,2020,72(4): 426-432. [35] CAI Y,LIU H,SONG E F,et al.Deficiency of telomere-associated repressor activator protein 1 precipitates cardiac aging in mice via p53/PPARα signaling[J].Theranostics,2021,11(10):4710-4727. [36] 姚婷婷,王静云,陆文全,等.端粒结合蛋白Rap1促进化疗药物诱导的胃癌细胞衰老相关分泌表型[J].中国老年学杂志,2018,38(8):1912-1916. |