[1] 苗蕊. 卷烟生产过程产品质量控制管理优化研究[D]. 江苏徐州:中国矿业大学,2021. [2] 杨蕾, 杨乾栩, 冯洪涛, 等.卷烟产品消费者满意度影响因素实证研究[J].云南农业大学学报(社会科学),2019,13(5):93-101. [3] 李铁军,杨得强,李强.国内车间烟虫治理现状及问题研究[J].北京农业,2013(6):193-194. [4] 张娟,王彬彬.卷烟生产过程烟虫防治浅析[J].企业导报,2015(20):150,146. [5] 李朝晖, 许侨, 蔡京伟, 等.烟草甲的防治研究进展[J].江苏农业科学,2021,49(7):33-43. [6] 李翊玮. 一种粘捕型烟虫诱捕器[P].中国专利:CN201520118066.0,2015-07-22. [7] 孙艘. 烟虫虫情图像采集与检测系统研究[D]. 武汉: 华中科技大学, 2017. [8] 段晓威, 李健, 鲁菁. 基于图像处理的烟虫预警系统的设计与实现[J]. 通讯世界, 2019(17):224. [9] REN S, HE K, GIRSHICK R, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6):1137-1149. [10] HE K, GKIOXARI G, DOLLAR P, et al.Mask R-CNN[A].Proceedings of the IEEE international conference on computer vision(ICCV)[C].Venice,Italy:IEEE,2017. [11] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[A].Proceedings of the IEEE conference on computer vision and pattern recognition[C]. Honolulu,USA:IEEE,2017. [12] DUAN K, BAI S, XIE L, et al.CenterNet: Keypoint triplets for object detection[A].Proceedings of the IEEE/CVF international conference on computer vision[C].Piscataway,USA:IEEE,2019. [13] CHENG X, ZHANG Y H, WU Y Z, et al.Agricultural bettles tracking and identification in video surveillance based on deep learning[A].International conference on intelligent computing[C].Switzerland:Springer Cham, 2017. [14] 彭帆. 基于卷积神经网络的小目标检测方法研究及应用[D]. 四川绵阳:西南科技大学,2022. [15] 林俊宇. 基于机器视觉的烟虫检测方法研究[D].武汉:华中科技大学,2020. [16] 洪金华, 忻惠琴, 陆海华, 等. 基于YOLOV3模型的卷烟厂烟虫识别方法[J]. 烟草科技, 2020, 53(9): 77-84. [17] 杨光露,李春松,李愿军,等.基于CenterNet模型的烟草甲虫视觉检测方法设计[J].中国烟草学报,28(6):77-84. [18] DEVRIES T,TAYLOR G W. Improved regularization of convolutional neural networks with cutout[J].arXiv preprints:1708.045 52,2017. [19] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[A].2021 IEEE/CVF conference on computer vision and pattern recognition[C].New York, USA: IEEE,2021. |