[1] JIAO F, LUO R, DAI X, et al.Chromosome-level reference genome and population genomic analysis provide insights into the evolution and improvement of domesticated mulberry(Morus alba)[J]. Molecular plant, 2020, 13(7): 1001-1012. [2] 蒯元璋,吴福安.桑椹菌核病病原及病害防治技术综述[J]. 蚕业科学, 2012, 38(6): 1099-1104. [3] ZHU Z, YU C, DONG Z X, et al.Phylogeny and fungal community structures of helotiales associated with sclerotial disease of mulberry fruits in China[J]. Plant disease, 2024, 108(2): 502-512. [4] GRAY E, GRAY R E.Observations on popcorn disease of mulberry in south central Kentucky[J]. Castanea the journal of the Southern Appalachian Botanical club, 1987, 52(1): 47-51. [5] JU W T, KIM H B, SUNG G B, et al.Mulberry popcorn disease occurrence in Korea region and development of integrative control method[J]. International journal of industrial entomology, 2016, 33(1): 36-40. [6] SHIMANE T.Relationship between ascospore dispersal of Ciboria shiraiana and development of popcorn disease of mulberry[Morus] fruits[J]. Acta sericologica et entomologica, 1994, 7:27-36. [7] 吕蕊花,金筱耘,赵爱春,等.果桑肥大性菌核病菌和油菜菌核病菌的交叉侵染、生物学特性及遗传关系[J]. 作物学报, 2015, 41(1): 42-48. [8] 朱志贤,董朝霞,莫荣利,等.桑椹肥大型菌核病化学防治技术研究[J]. 果树学报, 2022, 39(7):1262-1270. [9] TIAN Y, YANG G, WANG Z, et al.Detection of apple lesions in orchards based on deep learning methods of CycleGAN and YOLOv3-dense[J]. Journal of sensors, 2019, 157:417-426. [10] LIU J, WANG X.Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model[J]. Plant methods, 2020, 16: 1-16. [11] WANG J, YU L, YANG J, et al.DBA_SSD: A novel end-to-end object detection algorithm applied to plant disease detection[J]. Information, 2021, 12(11): 474. [12] WANG X, LIU J.Multiscale parallel algorithm for early detection of tomato gray mold in a complex natural environment[J]. Frontiers in plant science, 2021, 12: 620273. [13] ZHU J, CHENG M, WANG Q, et al.Grape leaf black rot detection based on super-resolution image enhancement and deep learning[J]. Frontiers in plant science, 2021, 12: 695749. [14] 侯发东. 基于卷积神经网络的棉花叶部病虫害自动识别研究[D]. 山东泰安: 山东农业大学, 2020. [15] 陈洋. 基于卷积神经网络的农作物病虫害图像分类研究[D]. 南昌: 江西农业大学, 2019. [16] 柴帅,李壮举.基于迁移学习的番茄病虫害检测[J]. 计算机工程与设计, 2019, 40(6):1701-1705. [17] 吴健宇. 基于深度卷积神经网络的农作物病虫害识别及实现[D]. 哈尔滨:哈尔滨工业大学,2019. [18] 陈天娇,董伟,曾娟,等.基于深度学习的病虫害智能化识别系统[J]. 中国植保导刊,2019,39(4):26-34. [19] REDMON J,FARHADI A.YOLOv3:An incremental improvement[J/OL]. https://doi.org/10.48550/arXiv.1804.02767. [20] REN S, HE K, GIRSHICK R, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis & machine intelligence, 2017, 39(6): 1137-1149. [21] TAN M X, PANG R M, LE Q V.Efficientdet: Scalable and efficient object detection[A]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition[C]. IEEE, 2020.10781-10790. [22] YU J, ZHANG W.Face mask wearing detection algorithm based on improved YOLO-v4[J]. Sensors, 2021, 21(9): 3263. |