[1] SEREGIN I V, KOZHEVNIKOVA A D.Roles of root and shoot tissiues in transport and accumulation of cadmium,lead, nickel,and strontium[J].Russian journal of plant physiology, 2008,55(1):1-22. [2] 鄂志国,张玉屏,王磊.水稻镉胁迫应答分子机制研究进展[J].中国水稻科学, 2013, 27(5): 539-544. [3] GUO M X, TONG H, CAI D Q, et al.Effect of wetting-drying cycles on the Cu bioavailability in the paddy soil amended with CuO nanoparticles[J].Journal of hazardous materials, 2022, 436:129119. [4] 李富荣,李敏,朱娜,等.水作和旱作施用改良剂对蕹菜-土壤系统中铅镉生物有效性的影响差异[J].农业环境科学学报,2017,36(8): 1477-1483. [5] 杨小粉,吴勇俊,张玉盛,等.水分管理对水稻镉吸收的影响[J].中国稻米,2019,25(4): 34-37. [6] ARAO T, KAWASAKI A, BABA K, et al.Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J].Environmental science & technology, 2009,43(24): 9361-9367. [7] HU P J, OUYANG Y N, WU L H, et al.Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar[J].Journal of environmental sciences, 2015, 27: 225-231. [8] HONMA T, OHBA H, KANEKO-KADOKURA A, et al.Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J].Environmental science & technology, 2016,50(8): 4178-4185. [9] 朱永官,彭静静,韦中,等.土壤微生物组与土壤健康[J].中国科学:生命科学,2021,51(1):1-11. [10] PAN X M, ZHANG S R, ZHONG Q M, et al.Effects of soil chemical properties and fractions of Pb,Cd,and Zn on bacterial and fungal communities[J].Science of the total environment,2020,715:136904. [11] 孙波,赵其国,张桃林,等.土壤质量与持续环境——Ⅲ.土壤质量评价的生物学指标[J].土壤,1997,29(5): 225-234. [12] DONG W Y, ZHANG X Y, DAI X Q, et al.Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China[J].Applied soil ecology, 2014, 84:140-147. [13] 张俊伶,张江周,申建波,等.土壤健康与农业绿色发展:机遇与对策[J].土壤学报,2020,57(4):783-796. [14] KASEMODEL M C, SAKAMOTO I K, VARESCHE M B A, et al. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit[J].Science of the total environment, 2019,675:367-379. [15] 褚海燕,冯毛毛,柳旭,等.土壤微生物生物地理学:国内进展与国际前沿[J].土壤学报,2020,57(3):515-529. [16] BEATTIE R E, HENKE W, CAMPA M F, et al.Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased[J].Soil biology and biochemistry, 2018, 126: 57-63. [17] ZHAO Y F, GAO J F, WANG Z Q, et al.Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment[J].Journal of hazardous materials, 2021, 402:123550. [18] HAO X L, ZHU J J, REN S C, et al.Recent advances in exploring the heavy metal (loid) resistant microbiome[J].Computational and structural biotechnology journal, 2021, 19:94-109. [19] 郑开凯,马志远,孙波,等.不同施肥措施对水稻土壤微生物镉抗性的影响[J].环境科学,2021,42(1):394-402. [20] 来雪慧,李丹,于波峰,等.东北农场农作物生长季土壤呼吸对温度和含水量的响应[J].水土保持研究,2016,23(1):117-122. [21] XUE K, VAN NOSTRAND J D, VANGRONSVELD J,et al. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil[J].Chemosphere, 2015,138:469-477. [22] ROOSA S,WATTIEZ R, PRYGIEL E, et al.Bacterial metal resistance genes and metal bioavailability in contaminated sediments[J].Environmental pollution, 2014, 189:143-151. [23] INTORNE A C,DE OLIVEIRA M V V,DE M PEREIRA L,et al. Essential role of the czc determinant for cadmium,cobalt and zinc resistance in Gluconacetobacter diazotrophicus PAl 5[J].International microbiology, 2012, 15(2): 69-78. [24] SCHERER J, NIES D H.CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34[J].Molecular microbiology, 2009, 73(4): 601-621. [25] SMITH A T, ROSS M O, HOFFMAN B M, et al.Metal selectivity of a Cd-, Co-, and Zn-transporting P1B-type ATPase[J].Biochemistry, 2017, 56(1): 85-95. [26] 秦伟彤. 大肠杆菌镉抗性相关基因的挖掘及功能验证[D].北京:中国农业科学院,2018. [27] NUCIFORA G, CHU L, MISRA T K, et al.Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase[J].Proceedings of the national academy of sciences of the United States of America, 1989, 86(10):3544-3548. [28] SHI K X, LI C, RENSING C, et al.Efflux transporter ArsK is responsible for bacterial resistance to arsenite, antimonite, trivalent roxarsone, and methylarsenite[J].Applied and environmental microbiology, 2018, 84(24): e01842-18. [29] 王琳清,鄢韬,陈永坚,等.不同水分条件下施用调理剂对土壤铅镉的钝化效应[J].广西师范大学学报(自然科学版),2023,41(4):231-242. [30] 范世奇. 水肥处理对土壤Cd赋存形态及作物吸收特征的影响[D].沈阳:沈阳农业大学,2018. [31] 齐述华,李召良,王长耀.1982—2001年间我国受旱和受旱成灾耕地的遥感提取研究[J].中国农业大学学报,2008,13(6):43-48. [32] 刘铭,刘凤枝,刘保峰.土壤中有效态铅和镉的测定[J].农业环境科学学报,2007,26(S1):300-302. [33] LIU J G, CAO C X, WONG M H, et al.Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake[J].Journal of environmental sciences,2010, 22(7):1067-1072. [34] 兰玉书,袁林,杨刚,等.钝化材料对农田土壤Cd形态及微生物群落的影响[J].农业环境科学学报,2020,39(12):2743-2751. [35] 曾鹏,蒋毅,辜娇峰,等.多元复合调理剂对镉砷污染农田土壤微生物群落结构的影响[J].中国环境科学,2021,41(8): 3740-3748. [36] 李奇,王艳红,李义纯,等.不同类型调理剂对镉污染土壤修复效果和微生物群落的影响[J].南方农业学报,2022,53(7): 1855-1866. [37] RANJARD L, DEQUIEDT S, CHEMIDLIN PRÉVOST-BOURÉ N C, et al.Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity[J].Nature communications, 2013, 4:1434. [38] NIES D H.Efflux-mediated heavy metal resistance in prokaryotes[J].FEMS microbiology reviews, 2003, 27(2-3): 313-339. [39] ZHANG Y L, LI X.A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive 1[J].Plant cell,2005, 17(4): 1306-1316. [40] GARCIA N F S, ARF O, PORTUGAL J R, et al. Doses and application methods of Azospirillum brasilense in irrigated upland rice[J].Revista brasileira de engenharia agrícola e ambiental, 2016, 20(11): 990-995. |