[1] BOOSANI C S, AGRAWAL D K.Methylation and microRNA-mediated epigenetic regulation of SOCS3[J]. Molecular biology reports,2015, 42(4):853-872. [2] SONG X, LI Y, CAO X, et al.MicroRNAs and their regulatory roles in plant-environment interactions[J]. Annual review of plant biology, 2019, 70(1):489-525. [3] LEE R C, FEINBAUM R L, AMBROS V.The C. elegans heterochouronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. [4] REINHART B J, SLACK F J, BASSON M, et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403: 901-906. [5] REINHART B J.MicroRNAs in plants[J]. Genes & development, 2002, 16(13):1616-1626. [6] GOODWIN S, MCPHERSON J D, MCCOMBIE W R.Coming of age:Ten years of next-generation sequencing technologies[J]. Nature reviews genetics, 2016, 17(6):333-351. [7] BURCU A, AKPINAR B A, HIKMET B.A Comprehensive prescription for plant miRNA identification[J]. Frontiers in plant science, 2017, 7:2058. [8] KIM V N, HAN J, SIOMI M C.Biogenesis of small RNAs in animals[J]. Nature reviews molecular cell biology, 2009, 10(2):126-139. [9] BHAT S S, JARMOLOWSKI A,SZWEYKOWSKA-KULIŃSKA Z. MicroRNA biogenesis: Epigenetic modifications as another layer of complexity in the microRNA expression regulation[J]. Acta biochimica polonica, 2016, 63(4):717. [10] FLYNT A S, LAI E C.Biological principles of microRNA-mediated regulation: Shared themes amid diversity[J]. Nature reviews genetics, 2008, 9(11):831-842. [11] AGNIESZKA M, AGNIESZKA R, JOANNA S, et al.AmiRNA Designer - new method of artificial miRNA design[J]. Acta biochimica polonica, 2016, 63(1):71-77. [12] AXTELL M J, WESTHOLM J O, LAI E C.Vive la différence:Biogenesis and evolution of microRNAs in plants and animals[J]. Genome biology, 2011, 12(4):221. [13] DENLI A M, TOPS B B J, PLASTERK R H A, et al. Processing of primary microRNAs by the microprocessor complex[J]. Nature, 2004, 432(7014):231-235. [14] SIOMI H, SIOMI M C.On the road to reading the rna-interference code[J]. Nature, 2009, 457(7228):396-404. [15] CATALANOTTO C, COGONI C, ZARDO G.MicroRNA in control of gene expression: An overview of nuclear functions[J]. Int J Mol Sci,2016, 17(10):1712. [16] CAMPO S, PERIS‐PERIS C, SIRÉ C, et al. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance‐associated macrophage protein 6) gene involved in pathogen resistance[J]. New phytologist, 2013, 29:117. [17] LI Y, LU Y G, SHI Y, et al.Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae[J]. Plant physiology, 2014, 164(2):1077-1092. [18] LI Y, ZHAO S L, LI J L, et al.Osa-miR169 negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. Frontiers in plant science, 2017, 8:2. [19] ZHAO Z X, FENG Q, CAO X L, et al.Osa-miR167d facilitates infection of Magnaporthe oryzae in rice[J]. Journal of integrative plant biology, 2019,19:14. [20] ZHANG X, BAO Y, SHAN D, et al.Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice[J]. Plant physiol, 2018, 177(1): 352-368. [21] CHANDRAN V, WANG H, GAO F, et al.MiR396-OsGRFs module balances growth and rice blast disease-resistance[J]. Frontiers in plant science, 2019, 9:1999. [22] WU J, YANG Z, WANG Y, et al.Viral-inducible argonaute 18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA[J]. eLife, 2015, 4:e05733. [23] TONG A Z, YUAN Q, WANG S, et al.Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms[J]. Journal of experimental botany, 2017, (15):15. [24] WANG H, JIAO X, KONG X, et al.A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway[J]. Plant physiology, 2016, 170(4): 2365-2377. [25] YANG J, ZHANG F, LI J, et al.Integrative analysis of the microRNAome and transcriptome illuminates the response of susceptible rice plants to rice stripe virus[J]. PLoS One, 2016,11(1):e0146946. [26] YAO S Z, YANG Z R, YANG R X, et al.Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice[J]. Molecular plant, 2019,12(8): 1114-1122. [27] ZHANG J, ZHANG H, SRIVASTAVA A K, et al.Knock-down of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant physiology, 2018,176(3): 2082-2094. [28] XIA K, WANG R, OU X, et al.OsTIR1 and OsAFB2 Down regulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to Salt and drought in rice[J]. PLoS One, 2012,7(1):e30039. [29] FANG Y, XIE K, XIONG L.Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. Journal of experimental botany, 2014, (8):8. [30] TIAN C, ZUO Z, QIU J L.Identification and characterization of ABA-responsive microRNAs in rice[J]. Journal of genetics and genomics, 2015, 42(7):393-402. [31] XU S, JIANG Y, CUI W, et al.Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression[J]. Plant & soil, 2017, 414(1-2):53-67. [32] TANG W, THOMPSON W A.OsmiR528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in plant cells[J]. Curr Genomics, 2019, 20(2): 100-114. [33] DING Y, CHEN Z, ZHU C, et al.Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa)[J]. Journal of experimental botany, 2011, 62(10): 3563-3573. [34] DING Y, QU A, GONG S, et al.Molecular identification and analysis of Cd-responsive microRNAs in rice[J]. Journal of agricultural & food chemistry, 2013, 61(47):11668-11675. [35] DING Y, YE Y, JIANG Z, et al.MicroRNA390 is involved in cadmium tolerance and accumulation in rice[J]. Front Plant Sci, 2016, 7: 235. [36] DING Y, WANG Y, JIANG Z, et al.MicroRNA268 overexpression affects rice seedling growth under cadmium stress[J]. Journal of agricultural and food chemistry, 2017, 65(29): 5860-5867. [37] DING Y,GONG S,WANG Y, et al.MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice[J]. Plant physiology, 2018,177(4): 1691-1703. [38] LIU Q, HU H, ZHU L, et al.Involvement of miR528 in the regulation of arsenite tolerance in rice (Oryza sativa L.)[J]. Journal of agricultural and food chemistry, 2015, 63(40):8849-8861. [39] ZHU Q H, SPRIGGS A, MATTHEW L, et al.A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains[J]. Genome research, 2008, 18(9):1456-1465. [40] ZHOU M, LI D, LI Z,et al.Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass.[J]. Plant physiology, 2014, 161(4):1375-1391. [41] YANG W, FAN T, HU X, et al.Overexpressing osa-miR171c decreases salt stress tolerance in rice[J]. Journal of plant biology, 2017, 60(5):485-492. [42] YUAN S, LI Z, LI D, et al.Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in Creeping Bentgrass[J]. Plant physiology, 2015, 169(1):576-593. [43] GAO P, BAI X, YANG L, et al.Over-expression of osa-MIR396c decreases salt and alkali stress tolerance[J]. Planta, 2010, 231(5):991-1001. [44] JIAO Y Q, WANG Y H, XUE D W, et al.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature genetics, 2010, 42(6):541-544. [45] WANG S K, WU K, YUAN QB, et al.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature genetics, 2012, 44(8):950-954. [46] SI L Z, CHEN J Y, HUANG X H, et al.OsSPL13 controls grain size in cultivated rice[J]. Nature genetics, 2016,48(4): 447-456. [47] ZHU Q H, UPADHYAYA N M, GUBLER F, et al.Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa)[J]. BMC plant biology, 2009, 9(1):149. [48] LEE Y S, LEE D Y, CHO L H, et al.Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of End1 and floigens[J]. Rice, 2014,7(1):31. [49] CHE R, TONG R H, SHI H N, et al.Control of grain size and rice yield by GL2-mediatedbrassinosteroid responses[J]. Nature plants, 2015, 2(1):15195. [50] DUAN P, NI S, WANG J, et al.Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature plants, 2015, 2(1):15203. [51] GAO F, WANG K, LIU Y, et al.Blocking miR396 increases rice yield by shaping inflorescence architecture[J]. Nature plants, 2015, 2(1):15196. [52] ZHANG Y, YU Y, WANG C, et al.Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nature biotechnology, 2013,31(9): 848-852. [53] ZHANG H, ZHANG J, YAN J, et al.Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits[J]. Proceedings of the national academy of sciences, 2017, 114(20): 5277-5282. [54] 肖之源, 王青霞, 王贺,等. 水稻miR444b.2调控稻瘟病抗性及分蘖[J]. 植物病理学报, 2017(4):82-93. [55] 封洁琼, 刘清, 潘依,等. OsmiR156过表达对水稻分蘖数与生长生理相关性的影响[J]. 安徽农业科学, 2014, 42(11):3172-3174. [56] 吴美婷. miR159和miR390在水稻生长发育中调控功能的初探[D]. 广东深圳:深圳大学,2018. [57] 韦懿, 陈志辉, 陈国兴,等. 超量表达水稻miRNA 167a调控株型的研究[J]. 分子植物育种, 2011, 9(4):390-396. [58] 杜思宇. miRNA在水稻产量和胁迫方面的研究进展[J]. 杂交水稻, 2019,34(6):7-11. |