湖北农业科学 ›› 2025, Vol. 64 ›› Issue (5): 147-154.doi: 10.14088/j.cnki.issn0439-8114.2025.05.023

• 信息工程 • 上一篇    下一篇

TVFEMD寻优分解与智能算法优化的FLN土壤含水量预测

田宇1, 崔东文2   

  1. 1.云南省水利水电勘测设计院,昆明 650021;
    2.文山壮族苗族自治州水务局,云南 文山 663000
  • 收稿日期:2024-11-06 出版日期:2025-05-25 发布日期:2025-06-11
  • 通讯作者: 崔东文(1978-),男,云南玉溪人,教授级高级工程师,主要从事水资源管理保护及智能算法应用研究等工作,(电子信箱)cdwgr@163.com。
  • 作者简介:田 宇(1988-),男,吉林四平人,高级工程师,主要从事农田灌溉及水利工程设计等工作,(电子信箱)189566990@qq.com
  • 基金资助:
    国家自然科学基金项目(41702278); 中国地质调查局地质调查项目(DD20221758; DD20190326)

TVFEMD optimization decomposition and FLN-based soil moisture content prediction using intelligent algorithm optimizations

TIAN Yu1, CUI Dong-wen2   

  1. 1. Yunnan Institute of Water & #x00026;Hydropower Engineering Investigation, Design and Research, Kunming 650021, China;
    2. Wenshan Zhuang and Miao Autonomous Prefecture Water Bureau, Wenshan 663000, Yunnan, China
  • Received:2024-11-06 Published:2025-05-25 Online:2025-06-11

摘要: 以云南省天星站和坡脚站10、20、40 cm 3个土层的土壤含水量观测数据为基础,通过改进时变滤波经验模态分解(TVFEMD)和快速学习网(FLN)方法构建基于多种优化算法的预测模型(TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN),提升土壤含水量时间序列预测精度。通过比较各优化算法的模型性能,为土壤水分预测提供更优的建模方法。结果表明,TVFEMD分解效果主要受带宽阈值和B样条阶数2个关键参数影响。采用IVYA算法优化这2个参数可提升时间序列分解质量,进而改善模型预测性能。TVFEMD-BLSO/AO/IVYA/EGO-FLN模型在训练集上表现出卓越的预测性能,其平均绝对百分比误差(MAPE)为0.002%~0.077%,决定系数(R2)为0.999 7~1.000 0;预测集中的MAPE为0.006%~0.459%,R2为0.996 6~1.000 0。与TVFEMD-PSO-FLN模型相比,TVFEMD-BLSO/AO/IVYA/EGO-FLN模型在拟合性能和预测精度方面均有明显提升。采用BLSO、AO、IVYA和EGO算法优化FLN超参数可有效提升模型性能,其中IVYA算法的优化效果较突出。

关键词: 时变滤波经验模态分解(TVFEMD), 算法优化, 快速学习网(FLN), 土壤含水量, 预测

Abstract: Based on the observed soil moisture content data from 10, 20, and 40 cm soil layers at Tianxing and Pojiao stations in Yunnan Province, a prediction model (TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN) was constructed by improving the time-varying filter empirical mode decomposition (TVFEMD) and fast learning network (FLN) methods to enhance the time-series prediction accuracy of soil moisture content. By comparing the performance of different optimization algorithms, a superior modeling approach was provided for soil moisture prediction. The results showed that the TVFEMD decomposition performance was primarily influenced by two key parameters: Bandwidth threshold and B-spline order. Optimizing these two parameters using the IVYA algorithm improved the time-series decomposition quality and further enhanced the model’s prediction performance. The TVFEMD-BLSO/AO/IVYA/EGO-FLN model demonstrated outstanding prediction performance on the training set, with a mean absolute percentage error (MAPE) of 0.002%~0.077% and a coefficient of determination (R2) of 0.999 7~1.000 0. The MAPE in the prediction set was 0.006%~0.459%, and R2 was 0.996 6~1.000 0. Compared with the TVFEMD-PSO-FLN model, the TVFEMD-BLSO/AO/IVYA/EGO-FLN model showed significant improvements in both fitting performance and prediction accuracy. Optimizing FLN hyperparameters using BLSO, AO, IVYA, and EGO algorithms effectively improved model performance, with the IVYA algorithm exhibiting the most notable optimization effect.

Key words: time-varying filter empirical mode decomposition (TVFEMD), algorithm optimization, fast learning network (FLN), soil moisture content, prediction

中图分类号: