湖北农业科学 ›› 2025, Vol. 64 ›› Issue (10): 201-206.doi: 10.14088/j.cnki.issn0439-8114.2025.10.031

• 信息工程 • 上一篇    下一篇

YOLOv8n-LF模型在机收小麦含杂率与破碎率检测中的应用

周洪, 孟小艳, 方伟舟, 丁晓晨   

  1. 新疆农业大学计算机与信息工程学院/智能农业教育部工程研究中心/新疆农业信息化工程技术研究中心,乌鲁木齐 830052
  • 收稿日期:2025-02-27 出版日期:2025-10-25 发布日期:2025-11-14
  • 通讯作者: 孟小艳(1978-),女,新疆昌吉人,博士,副教授,主要从事知识图谱、人工智能方向研究,(电话)13609979825(电子信箱)mxy@xjau.edu.cn。
  • 作者简介:周 洪(1999-),男,湖南岳阳人,硕士,主要从事计算机视觉方向研究,(电话)15773040399(电子信箱)2250881784@qq.com。
  • 基金资助:
    科技创新2030——“新一代人工智能”重大项目(2022ZD0115805); 新疆维吾尔自治区重大科技专项(2022A02011)

YOLOv8n-LF model in detecting the impurity and broken rates of machine-harvested wheat

ZHOU Hong, MENG Xiao-yan, FANG Wei-zhou, DING Xiao-chen   

  1. College of Computer and Information Engineering, Xinjiang Agricultural University/Engineering Research Center of Intelligent Agriculture, Ministry of Education/Xinjiang Engineering Research Center for Agriculture Informatization, Urumqi 830052, China
  • Received:2025-02-27 Published:2025-10-25 Online:2025-11-14

摘要: 针对收割机对小麦含杂率与破碎率实时检测的需求,基于图像分割方法提出一种检测模型(YOLOv8n-LF),以实现对小麦含杂率与破碎率的自动评估。首先,在SPPF模块中引入LSKA注意力机制,增强模型的多尺度特征提取能力;其次,采用Focal Loss的焦点调节机制对CIoU损失函数进行优化,聚焦不同的回归样本,提高模型检测效果。在自建数据集上,YOLOv8n-LF模型在保持轻量化的同时,兼具良好的分割性能,便于在边缘设备中部署,能够为小麦含杂率与破碎率的自动检测提供有效技术支持,从而促进农机智能化水平的提升。

关键词: YOLOv8n-LF模型, 机收小麦, 含杂率, 破碎率, 检测

Abstract: To address the need for real-time detection of wheat impurity and broken rates during combine harvesting, a detection model (YOLOv8n-LF) was proposed based on an image segmentation method to achieve automatic assessment of wheat impurity and broken rates. First, the LSKA attention mechanism was introduced into the SPPF module to enhance the model’s multi-scale feature extraction capability. Second, the focal adjustment mechanism of Focal Loss was employed to optimize the CIoU loss function, focusing on different regression samples and improving the model’s detection performance. On a self-constructed dataset, the YOLOv8n-LF model maintained lightweight characteristics while demonstrating good segmentation performance, facilitating its deployment on edge devices. It can provide effective technical support for the automatic detection of wheat impurity and broken rates, thereby promoting the advancement of agricultural machinery intelligence.

Key words: YOLOv8n-LF model, machine-harvested wheat, impurity rate, broken rate, detection

中图分类号: