[1] 王晋伟,赵丽红,师勇强,等.棉花病害全程防治技术研究初报[J].中国棉花,2020,47(5):20-22,46. [2] 戴建国,赖军臣.基于图像规则与Android手机的棉花病虫害诊断系统[J].农业机械学报,2015,46(1):35-44. [3] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOV4: Optimal speed and accuracy of obiect detection[J]. arXiv.2004.10934, 2020. [4] WU Y J, YANG Y, WANG X F, et al.Fig fruit recognition method based on YOLOv4 deep learning[A].2021 18th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON)[C]. Chiang Mai, Thailand:IEEE, 2021. [5] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[A]. 2017 IEEE conference on computer vision and pattern recognition (CVPR)[C].Honolulu, HI, USA: IEEE, 2017. 6517-6525. [6] 武星,齐泽宇,王龙军,等.基于轻量化YOLOv3卷积神经网络的苹果检测方法[J].农业机械学报,2020,51(8):17-25. [7] 薛月菊,黄宁,涂淑琴,等.未成熟芒果的改进YOLOv2识别方法[J].农业工程学报,2018,34(7):173-179. [8] FAN Y B, MAO S J, LI M, et al.CM-YOLOv8: Lightweight YOLO for coal mine fully mechanized mining face[J]. Sensors, 2024, 24(6): 1866. [9] 郭文娟,冯全.基于改进YOLO的棉花叶片病害检测[J].干旱地区农业研究,2024,42(6):195-205. [10] LI S, TAO T, ZHANG Y, et al.YOLO v7-CS: A YOLO v7-Based model for lightweight bayberry target detection count[J]. Agronomy, 2023, 13(12): 2952. [11] 张楠楠,张晓,白铁成,等.基于CBAM-YOLO v7的自然环境下棉叶病虫害识别方法[J].农业机械学报,2023,54(S1):239-244. [12] UDAWANT P, SRINATH P.Cotton leaf disease detection using instance segmentation[J]. Journal of cases on information technology, 2022, 24(4): 1-10. [13] TRIPATHY S.Detection of cotton leaf disease using image processing techniques[J]. Journal of physics: Conference series, 2021(1): 012009. [14] PAUL JOSHUA K,ALEX S A, MAGESWARI M, et al.Enhanced conditional self-attention generative adversarial network for detecting cotton plant disease in IoT-enabled crop management[J]. Wireless networks, 2025, 31(1): 299-313. [15] WOO S, DEBNATH S, HU R H, et al.ConvNeXtv2: Co-designing and scaling convNets with masked autoencoders[A].2023 IEEE/CVF conference on computer vision and pattern recognition (CVPR)[C]. Vancouver, BC, Canada: IEEE, 2023.16133-16142. [16] LIU Z, MAO H Z, WU C-Y, et al.A ConvNet for the 2020s[A].IEEE/CVF conference on computer vision and pattern recognition (CVPR)[C]. New Orleans,LA, USA: IEEE,2022.11966-11976. [17] CHERPANATH E D, FATHIMA NASREEN P R, PRADEEP K, et al. Food image recognition and calorie prediction using faster R-CNN and mask R-CNN[A].9th international conference on smart computing and communications (ICSCC)[C]. Kochi, Kerala, India: IEEE, 2023. 83-89. [18] EL GHAOUI L, GU F D, TRAVACCA B, et al.Implicit deep learning[J]. SIAM journal on mathematics of data science, 2021, 3(3): 930-958. [19] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051,2023. [20] CHEN J R, KAO S H, HE H, et al.Run, don’t walk: Chasing higher FLOPS for faster neural networks[A]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)[C]. Vancouver, BC, Canada: IEEE, 2023.12021-12031. [21] WADEKAR S N, CHAURASIA A. MobileViTv3: Mobile-friendly vision transformer with simple and effective fusion of local, global and input features[J].arXiv:2209.15159,2022. |