湖北农业科学 ›› 2025, Vol. 64 ›› Issue (10): 207-212.doi: 10.14088/j.cnki.issn0439-8114.2025.10.032

• 信息工程 • 上一篇    下一篇

基于CIW-YOLOv8n的棉花叶病害检测与识别方法

李佳骏, 董辉, 余霖, 刘金涛, 李双, 杨毅   

  1. 云南农业大学大数据学院,昆明 650201
  • 收稿日期:2025-02-03 出版日期:2025-10-25 发布日期:2025-11-14
  • 通讯作者: 杨 毅(1966-),男,云南昆明人,教授,主要从事农业信息化研究,(电子信箱)yyang66@126.com。
  • 作者简介:李佳骏(2000-),男,云南文山人,在读硕士研究生,主要从事计算机视觉研究,(电子信箱)1123284638@qq.com。
  • 基金资助:
    云南省重大科技专项(202002AE09001002); 云南省高层次人才支持计划项目(YNWR-JXMS-2020-57)

A CIW-YOLOv8n-based method for cotton leaf disease detection and recognition

LI Jia-jun, DONG Hui, YU Lin, LIU Jin-tao, LI Shuang, YANG Yi   

  1. College of Big Data, Yunnan Agricultural University, Kunming 650201, China
  • Received:2025-02-03 Published:2025-10-25 Online:2025-11-14

摘要: 针对棉花叶病害检测中存在的精确率低、检测效率不高的问题,从模型结构与检测效率两方面对YOLOv8模型进行改进,构建了CIW-YOLOv8n模型。在主干网络中引入C2f-ConvNeXtv2模块,该模块能根据输入图像动态调整卷积核,提升模型对不同图像内容的适应性与特征提取的准确性。在颈部网络中引入ImplicitHead检测头以替代原有结构,并将损失函数更换为WIoU,从而进一步优化模型的检测性能。结果表明,CIW-YOLOv8n模型的精确率、召回率、平均精度均值(mAP)、参数量、计算量分别为92.6%、82.4%、91.7%、2.761 MB、7.4×109,该模型在保持较低复杂度的同时,实现了更高的检测精度,有效平衡了模型的性能与效率。

关键词: CIW-YOLOv8n模型, YOLOv8模型, 棉花叶病害, 检测, 识别

Abstract: To address the issues of low accuracy and insufficient detection efficiency in cotton leaf disease detection, the YOLOv8 model was improved in terms of both model structure and detection efficiency, leading to the construction of the CIW-YOLOv8n model.The C2f-ConvNeXtv2 module was introduced into the backbone network, which dynamically adjusted the convolution kernels based on the input image, thereby enhancing the model’ adaptability to diverse image content and the accuracy of feature extraction. The ImplicitHead detection head was introduced into the neck network to replace the original structure, and the loss function was replaced with WIoU, further optimizing the detection performance of the model.The results showed that the precision, recall, mean average precision (mAP), number of parameters, and computational cost of the CIW-YOLOv8n model were 92.6%, 82.4%, 91.7%, 2.761 MB, and 7.4×109, respectively. This model achieved higher detection accuracy while maintaining low complexity, effectively balancing model performance and efficiency.

Key words: CIW-YOLOv8n model, YOLOv8 model, cotton leaf disease, detection, recognition

中图分类号: