湖北农业科学 ›› 2025, Vol. 64 ›› Issue (12): 104-109.doi: 10.14088/j.cnki.issn0439-8114.2025.12.018

• 植物保护 • 上一篇    下一篇

基于全子集回归和BP神经网络的信阳稻瘟病预测模型构建

户雪敏1, 朱志刚2, 姜照琴2, 季新1, 陈利军1, 史洪中1   

  1. 1.信阳农林学院农学院,河南 信阳 464000;
    2.信阳市农业技术服务中心,河南 信阳 464000
  • 收稿日期:2025-07-11 发布日期:2025-12-30
  • 通讯作者: 史洪中(1966-),男,河南信阳人,教授,硕士,主要从事植物保护领域的研究,(电子信箱)shz666@sina.com。
  • 作者简介:户雪敏(1990-),女,河南新乡人,讲师,博士,主要从事作物病害监测预警研究,(电子信箱)18710378386@163.com。
  • 基金资助:
    河南省科技攻关项目(242102111105)

Construction of a prediction model for Xinyang rice blast based on all subsets regression and BP neural network

HU Xue-min1, ZHU Zhi-gang2, JIANG Zhao-qin2, JI Xin1, CHEN Li-jun1, SHI Hong-zhong1   

  1. 1. College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China;
    2. Xinyang Agricultural Technology Service Center, Xinyang 464000, Henan, China
  • Received:2025-07-11 Online:2025-12-30

摘要: 利用2004—2021年(2020年除外)信阳市空气温度、相对湿度、降雨量和日照时数等,通过相关性分析筛选到影响稻瘟病流行的5个关键因子,即6月下旬最低相对湿度、5月上旬最低相对湿度、5月上旬最低气温、6月中旬日照时数和8月上旬累积降雨量,并采用全子集回归和BP神经网络算法对信阳市稻瘟病发生面积进行预测。结果表明,全子集回归模型1和模型2对2004—2021年稻瘟病发生面积的回测准确度分别为92.49%和94.43%,对2022年和2023年的预测准确度均为79.68%;BP神经网络模型1和模型2对2004—2021年稻瘟病发生面积回测准确度分别为82.72%和83.55%,对2022年和2023年的预测准确度分别为98.06%和95.49%。由上可知,BP神经网络模型1是最佳预测模型,其预测2024年信阳市稻瘟病发生面积为2.65万hm2

关键词: 稻瘟病, 发生面积, 全子集回归, BP神经网络算法, 预测模型, 构建, 信阳市

Abstract: Using meteorological data from the Xinyang City between 2004 and 2021 (excluding 2020), including air temperature, relative humidity, precipitation, and sunshine duration, five key factors influencing rice blast epidemics were identified through correlation analysis. These factors were:The minimum relative humidity in late June, the minimum relative humidity in early May, the minimum temperature in early May, the sunshine duration in mid-June, and the cumulative rainfall in early August. Both all-subset regression and BP neural network algorithms were employed to predict the incidence area of rice blast in the Xinyang City. The results showed that all-subset regression model 1 and model 2 achieved back-testing accuracies of 92.49% and 94.43%, respectively, for the 2004—; 2021 rice blast incidence area, and both yielded a prediction accuracy of 79.68% for the years 2022 and 2023. In comparison, BP neural network models 1 and model 2 achieved back-testing accuracies of 82.72% and 83.55%, respectively, for the 2004—; 2021 period, and prediction accuracies of 98.06% and 95.49% for 2022 and 2023. Based on these results, BP neural network model 1 was identified as the optimal prediction model. Using this model, the predicted incidence area of rice blast in Xinyang City for 2024 was 26 500 hectares(hm2).

Key words: rice blast, incidence area, all-subset regression, BP neural network algorithm, prediction model, construction, Xinyang City

中图分类号: