HUBEI AGRICULTURAL SCIENCES ›› 2025, Vol. 64 ›› Issue (6): 220-231.doi: 10.14088/j.cnki.issn0439-8114.2025.06.036
• Biological Engineering • Previous Articles Next Articles
LUO Xiao-yun1,2, LI Pei-de1,2, ZHENG Xing-fei1,2, YIN De-suo1,2, WANG Hong-bo1,2, HU Jian-lin1,2, HU Peng1,2, LIU Dan1,2, WEN Yi1,2, CHEN Dong-pan1,2, LEI Tian-jie3, XU De-ze1,2
Received:
2025-04-29
Online:
2025-06-25
Published:
2025-07-18
CLC Number:
LUO Xiao-yun, LI Pei-de, ZHENG Xing-fei, YIN De-suo, WANG Hong-bo, HU Jian-lin, HU Peng, LIU Dan, WEN Yi, CHEN Dong-pan, LEI Tian-jie, XU De-ze. Research on molecular mechanisms of Oryza sativa L. response to waterlogging stress during tillering stage using integrated transcriptome-metabolome analysis[J]. HUBEI AGRICULTURAL SCIENCES, 2025, 64(6): 220-231.
[1] GREGORY P J, GEORGE T S.Feeding nine billion: The challenge to sustainable crop production[J]. Journal of experimental botany, 2011, 62(15): 5233-5239. [2] GODFRAY H C J, BEDDINGTON J R, CRUTE I R, et al. Food security: The challenge of feeding 9 billion people[J]. Science, 2010, 327: 812-818. [3] 李茂松, 李森, 李育慧. 中国近50年洪涝灾害灾情分析[J]. 中国农业气象, 2004(1): 40-43. [4] 周建林, 周广洽, 陈良碧. 洪涝对水稻的危害及其抗灾减灾的栽培措施[J]. 自然灾害学报, 2001(1): 103-106. [5] VOESENEK L A C J, BAILEY-SERRES J. Flood adaptive traits and processes: An overview[J]. New phytologist, 2015, 206(1): 57-73. [6] FUKAO T, XIONG L.Genetic mechanisms conferring adaptation to submergence and drought in rice: Simple or complex?[J]. Current opinion in plant biology, 2013, 16(2): 196-204. [7] HATTORI Y, NAGAI K, ASHIKARI M.Rice growth adapting to deepwater[J]. Current opinion in plant biology, 2011, 14(1): 100-105. [8] KATO Y, COLLARD B C Y, SEPTININGSIH E M, et al. Physiological analyses of traits associated with tolerance of long-term partial submergence in rice[J]. AoB plants, 2014, 6: plu058. [9] LORETI E, VAN VEEN H, PERATA P.Plant responses to flooding stress[J]. Current opinion in plant biology, 2016, 33: 64-71. [10] ZHOU W, CHEN F, MENG Y, et al.Plant waterlogging/flooding stress responses: From seed germination to maturation[J]. Plant physiology and biochemistry, 2020, 148: 228-236. [11] 聂功平,陈敏敏,杨柳燕,等.植物响应淹水胁迫的研究进展[J]. 中国农学通报, 2021, 37(18): 57-64. [12] ISMAIL A M, SINGH U S, SINGH S, et al.The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia[J]. Field crops research, 2013, 152: 83-93. [13] 杨建莹, 霍治国, 吴立,等. 西南地区水稻洪涝等级评价指标构建及风险分析[J]. 农业工程学报, 2015, 31(16): 135-144. [14] 张林. 水稻涝害的危害症状及防治措施[J]. 农业灾害研究, 2018, 8(2): 54-55,65. [15] 杨龙树, 张从合, 严志,等. 长江流域水稻涝害的发生及应对措施[J]. 农业灾害研究, 2020, 10(4): 58-59,78. [16] 宣守丽, 石春林, 张建华,等. 分蘖期淹水胁迫对水稻地上部物质分配及产量构成的影响[J]. 江苏农业学报, 2013, 29(6): 1199-1204. [17] 邵长秀,潘学标,李家文,等. 不同生育阶段洪涝淹没时长对水稻生长发育及产量构成的影响[J]. 农业工程学报,2019,35(3):125-133. [18] VELCULESCU V E, ZHANG L, ZHOU W, et al.Characterization of the yeast transcriptome[J]. Cell, 1997, 88(2): 243-251. [19] COSTA V, ANGELINI C, DE FEIS I, et al.Uncovering the complexity of transcriptomes with RNA-Seq[J]. Journal of biomedicine and biotechnology, 2010,1: 853916. [20] FIEHN O, KOPKA J, DÖRMANN P, et al. Metabolite profiling for plant functional genomics[J]. Nature biotechnology, 2000, 18(11): 1157-1161. [21] FIEHN O.Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks[J]. Comparative and functional genomics, 2001, 2(3): 155-168. [22] NICHOLSON J K, LINDON J C, HOLMES E.Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 2008, 29(11): 1181-1189. [23] FIEHN O.Metabolomics-the link between genotypes and phenotypes[J]. Functional genomics, 2002, 48: 155-171. [24] GUIJAS C, MONTENEGRO-BURKE J R, WARTH B, et al. Metabolomics activity screening for identifying metabolites that modulate phenotype[J]. Nature biotechnology, 2018, 36(4): 316-320. [25] 李洁, 姚晓华. 多组学关联分析作物耐逆境胁迫研究进展[J]. 广东农业科学, 2019, 46(8): 22-28. [26] 季元, 于冰, 陈偲学. 多组学技术在植物应答非生物胁迫中的研究进展[J]. 中国农学通报, 2023, 39(23): 1-7. [27] 薛守宇, 朱涛, 李冰冰,等. 转录组和代谢组联合分析在植物中的应用研究[J]. 山西农业大学学报(自然科学版), 2022, 42(3): 1-13. [28] YAMAKAWA H, HAKATA M.Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation[J]. Plant and cell physiology, 2010, 51(5): 795-809. [29] ZHANG J, LUO W, ZHAO Y, et al.Comparative metabolomic analysis reveals a reactive oxygen species‐dominated dynamic model underlying chilling environment adaptation and tolerance in rice[J]. New phytologist, 2016, 211(4): 1295-1310. [30] SHU L, LOU Q, MA C, et al.Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought[J]. Proteomics, 2011, 11(21): 4122-4138. [31] DUBEY S, MISRA P, DWIVEDI S, et al.Transcriptomic and metabolomic shifts in rice roots in response to Cr(VI) stress[J]. BMC genomics, 2010, 11: 1-19. [32] WANG W S, ZHAO X Q, LI M, et al.Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling[J]. Journal of experimental botany, 2016, 67(1): 405-419. [33] WANG L,STEGEMANN J P.Extraction of high quality RNA from polysaccharide matrices using cetlytrimethylammonium bromide[J]. Biomaterials, 2010, 31(7): 1612-1618. [34] CHEN S, ZHOU Y, CHEN Y, et al.Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. [35] KIM D, LANGMEAD B, SALZBERG S L.HISAT: A fast spliced aligner with low memory requirements[J]. Nature methods, 2015, 12(4): 357-360. [36] LOVE M I, HUBER W, ANDERS S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome biology, 2014, 15(12): 1-21. [37] VARET H, BRILLET-GUÉGUEN L, COPPÉE J-Y, et al. SARTools: A DESeq2- and EdgeR-Based R pipeline for comprehensive differential analysis of RNA-Seq data[J]. PLoS one, 2016, 11(6): e0157022. [38] ASHBURNER M, BALL C A, BLAKE J A, et al.Gene ontology: Tool for the unification of biology[J]. Nature genetics,2000,25(1):25-29. [39] KANEHISA M, ARAKI M. GOTO S, et al.KEGG for linking genomes to life and the environment[J]. Nucleic acids research, 2007, 36: 480-484. [40] KANEHISA M, GOTO S.KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic acids research, 2000, 28(1): 27-30. [41] SAUTER M.Rice in deep water: How to take heed against a sea of troubles[J]. Naturwissenschaften, 2000, 87(7): 289-303. [42] PERATA P, VOESENEK L A C J. Submergence tolerance in rice requires [43] PANDA D, SHARMA S G, SARKAR R K.Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice ( [44] HATTORI Y, NAGAI K, FURUKAWA S, et al.The ethylene response factors [45] ADAK M K, GHOSH N, DASGUPTA D K, et al.Impeded carbohydrate metabolism in rice plants under submergence stress[J]. Rice science, 2011, 18(2): 116-126. [46] PUCCIARIELLO C, PERATA P.Quiescence in rice submergence tolerance: An evolutionary hypothesis[J]. Trends in plant science, 2013, 18(7): 377-381. [47] DAS K K, SARKAR R K, ISMAIL A M.Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice[J]. Plant science, 2005, 168(1): 131-136. [48] PANDA D, SARKAR R K.Non-structural carbohydrate metabolism associated with submergence tolerance in rice[J]. Genetics and plant physiology, 2011, 1(3-4): 155-162. [49] BLOKHINA O, VIROLAINEN E, FAGERSTEDT K V.Antioxidants, oxidative damage and oxygen deprivation stress: A review[J]. Annals of botany, 2003, 91(2): 179-194. [50] MITTLER R,VANDERAUWERA S,GOLLERY M, et al.Reactive oxygen gene network of plants[J]. Trends in plant science, 2004, 9(10): 490-498. [51] SANTOSA I E, RAM P C, BOAMFA E I, et al.Patterns of peroxidative ethane emission from submerged rice seedlings indicate that damage from reactive oxygen species takes place during submergence and is not necessarily a post-anoxic phenomenon[J]. Planta, 2007, 226(1): 193-202. [52] USHIMARO T, SHIBASAKA M, TSUJI H.Development of O2--detoxification system during adaptation to air of submerged rice seedlings[J]. Plant and cell physiology, 1992, 33(8): 1065-1071. [53] ALSCHER R G, ERTURK N, HEATH L S.Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of experimental botany, 2002, 53(372): 1331-1341. [54] ELLA E S, KAWANO N, ITO O.Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence[J]. Plant science, 2003, 165(1): 85-93. [55] 夏石头, 彭克勤, 曾可. 水稻涝害生理及其与水稻生产的关系[J]. 植物生理学通讯, 2000, 36(6): 581-588. [56] FUKAO T, BAILEY-SERRES J.Ethylene-a key regulator of submergence responses in rice[J]. Plant science, 2008, 175(1-2): 43-51. [57] SCHMITZ A J, FOLSOM J J, JIKAMARU Y, et al. [58] AYANO M, KANI T, KOJIMA M, et al.Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice[J]. Plant, cell & environment, 2014, 37(10): 2313-2324. [59] 张凤,陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. [60] UPCHURCH R G.Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress[J]. Biotechnology letters, 2008, 30(6): 967-977. [61] KACHROO A, KACHROO P.Fatty acid-derived signals in plant defense[J]. Annual review of phytopathology, 2009, 47: 153-176. [62] 王玉, 杨雪, 杨蕊菁,等. 调控苯丙烷类生物合成的MYB类转录因子研究进展[J]. 安徽农业大学学报, 2019, 46(5): 859-864. [63] 葛文佳, 辛建攀, 田如男. 植物苯丙烷代谢及其对重金属胁迫的响应研究进展[J]. 生物工程学报, 2023, 39(2): 425-445. [64] 汪胜勇,陈宇航,陈会丽,等. 水稻减数分裂期高温对苯丙烷类代谢及下游分支代谢途径的影响[J]. 中国水稻科学,2023,37(4):368-378. [65] 谢凤, 郝乐, 王振杰,等. 苯丙烷代谢途径分支对生物胁迫响应的研究进展[J]. 中国植保导刊, 2023, 43(2): 23-30. [66] 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 2022, 38(11): 1467-1476. [67] CARDOSO A A, GORI A, DA-SILVA C J, et al. Abscisic acid biosynthesis and signaling in plants: Key targets to improve water use efficiency and drought tolerance[J]. Applied sciences, 2020, 10(18): 6322. [68] CHEN K, LI G J, BRESSAN R A, et al.Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of integrative plant biology, 2020, 62(1): 25-54. [69] BROOKBANK B P, PATEL J, GAZZARRINI S, et al.Role of basal ABA in plant growth and development[J]. Genes (Basel), 2021, 12(12): 1936. [70] KUMAR S, SHAH S H, VIMALA Y, et al.Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation[J]. Frontiers in plant science, 2022, 13: 972856. [71] LIU H, SONG S, ZHANG H, et al.Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought[J]. International journal of molecular sciences, 2022, 23(23): 142824. [72] 刘晓龙, 徐晨, 邵勤,等. 脱落酸提高水稻抗逆性的研究进展[J]. 东北农业科学, 2022, 47(6): 29-33. [73] RAMA KRISHNAYYA G, SETTER T L, SARKAR R K, et al.Influence of phosphorus application to floodwater on oxygen concentrations and survival of rice during complete submergence[J]. Experimental agriculture, 1999, 35(2): 167-180. [74] GAUTAM P, NAYAK A K, LAL B, et al.Submergence tolerance in relation to application time of nitrogen and phosphorus in rice ( |
[1] | MENG Gang, WANG Rui-xian, CHU Qu, PENG Yun-wu, YANG Jin-hong, CHEN An-li, ZHANG Sheng-yuan, LING Jun. Full-length transcriptome sequencing and bioinformatics analysis of the Bombyx mandarina [J]. HUBEI AGRICULTURAL SCIENCES, 2025, 64(6): 197-206. |
[2] | ZHANG Hui, WANG Yi, HANG Xiao-ning, ZHANG Jian, LIAO Dun-xiu, TANG Rong-li. Effects of drought on cadmium content in rice and soil and cadmium resistance-associated microorganisms [J]. HUBEI AGRICULTURAL SCIENCES, 2025, 64(5): 10-16. |
[3] | ZHU Si-yi, DENG Long-jun, LI Tian-cai, ZHANG Yang, GUO Yong-yao, LUO Wei, DU Zong-jun. Full-length transcriptome sequencing analysis of Percocypris pingi and identification of antimicrobial peptide gene [J]. HUBEI AGRICULTURAL SCIENCES, 2025, 64(3): 167-175. |
[4] | MAO Nan-nan, SUN Yong-sheng, CHEN Hui, ZHOU Rong-yan, JI Ying. SNP analysis of the ovarian transcriptome of Columba livia with different egg production numbers [J]. HUBEI AGRICULTURAL SCIENCES, 2024, 63(4): 185-190. |
[5] | LI Xin-kui, LUO Xue-gang. Effects of SiO2 nanoparticles on seed germination, growth and photosynthetic properties of rice at tillering stage [J]. HUBEI AGRICULTURAL SCIENCES, 2024, 63(11): 6-12. |
[6] | GUO Xiao-liang, MU Sen, DUAN Yuan-yuan, HU Chang-qiang, HUANG Hao. The fresh processing technology and its feasibility of Cyathulae Radix slices [J]. HUBEI AGRICULTURAL SCIENCES, 2024, 63(11): 114-121. |
[7] | XIAO Wan-yu, SUN Yi-jia, ZHOU Xian-yu, REN Hai-long, ZHANG Jing, HUANG Jiang-hua, XU Dong-lin. Identification and diversity of the contaminative microorganisms in germination rate test of rice seeds [J]. HUBEI AGRICULTURAL SCIENCES, 2023, 62(7): 51-56. |
[8] | MAO Ke-xin, WANG Hai-rong, AN Miao, LV Wei, LI Jian, LI Guo-tian. Comparative analysis of the transcriptome of kiwifruit ‘Qihong' and ‘Xuxiang' during the overwintering period [J]. HUBEI AGRICULTURAL SCIENCES, 2023, 62(5): 165-171. |
[9] | YAN Geng-xuan, WANG Xiang-xiang, TIAN Yuan, LIU Zhi-ting, ZHANG Shu-mei, XIA Hai-hua. Identification of genes related to lipopeptide synthesis in mining lipopeptide synthesis related genes of Bacillus amyloliquefaciens TF28 under different carbon sources based on transcriptome [J]. HUBEI AGRICULTURAL SCIENCES, 2023, 62(5): 172-178. |
[10] | WANG Jia-qi, XIONG Yang, HAN Qing-qing, HUANG Pei-pei, MEI Jie. Full-length transcriptome sequencing and analysis of yellow catfish based on PacBio platform [J]. HUBEI AGRICULTURAL SCIENCES, 2023, 62(4): 194-201. |
[11] | WANG Hong-li, YANG Yang, HU Xue-bo. Comparative analysis of transcriptome of Ganoderma lucidum mycelium with different nuclear numbers [J]. HUBEI AGRICULTURAL SCIENCES, 2023, 62(12): 200-205,235. |
[12] | QIU Ru-qiong, PENG Shao-kun, LI Meng-fan. Extracting rice planting area based on deep learning and remote sensing data [J]. HUBEI AGRICULTURAL SCIENCES, 2023, 62(11): 176-182. |
[13] | LI Jie-qiong. Analysis of immune-related genes based on the transcriptome of Microdera punctipennis [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(22): 181-194. |
[14] | YANG Da-bing, XIA Ming-yuan, QI Hua-xiong. Breeding research progress and development strategies of photoperiod-thermo sensitive genic male sterile lines in rice [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(20): 5-8. |
[15] | CAO Yan, HUANG Yi, ZHU Bo, ZHAO Ji-wu, XIANG Yong-ling, LIAO Chang-jiao, WANG Xiao-ling. Effect of Lifengling application on lodging resistance and yield of machine-transplanted rice under waterlogging stress [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(23): 36-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||