湖北农业科学 ›› 2025, Vol. 64 ›› Issue (6): 178-184.doi: 10.14088/j.cnki.issn0439-8114.2025.06.030

• 信息工程 • 上一篇    下一篇

基于改进YOLOv8s-Seg模型的番茄成熟度检测

杨爽, 周中林   

  1. 长江大学经济与管理学院,湖北 荆州 434023
  • 收稿日期:2024-11-11 出版日期:2025-06-25 发布日期:2025-07-18
  • 通讯作者: 周中林(1965-),男,湖北荆州人,教授,主要从事智慧农业研究,(电话)13872396598(电子信箱)1345619914@qq.com。
  • 作者简介:杨 爽(1997-),男,湖北荆州人,在读硕士研究生,研究方向为农业发展,(电话)18571760031(电子信箱)1429587339@qq.com
  • 基金资助:
    国家自然科学基金面上项目(62077018)

Maturity detection of tomato based on the improved YOLOv8s-Seg model

YANG Shuang, ZHOU Zhong-lin   

  1. Economics and Management School, Yangtze University, Jingzhou 434023, Hubei, China
  • Received:2024-11-11 Published:2025-06-25 Online:2025-07-18

摘要: 为了实现对不同成熟度番茄的实时检测,提出改进YOLOv8s-Seg模型,从而满足现代农业对精准管理的需求。通过改进YOLOv8s-Seg模型的颈部模块来提高其网络性能,在每次上采样操作前,添加1×1 SimConv卷积,将颈部剩余的常规卷积替换为3×3 SimConv卷积,显著提高算法的特征融合能力。结果表明,改进YOLOv8s-Seg模型对成熟番茄、半成熟番茄和未成熟番茄的分割精确率分别为92.7%、92.3%和89.9%。与YOLOv8s-Seg模型相比,改进YOLOv8s-Seg模型的精确率、召回率、F1评分和mAP@0.5分别提高1.6、0.4、1.0、2.4个百分点;改进YOLOv8s-Seg模型的精确率、召回率、F1评分和mAP@0.5均高于YOLOv8s-Seg模型、YOLOv5s-Seg模型、YOLOv7-Seg模型和Mask R-CNN模型;改进YOLOv8s-Seg模型的推理时间为3.5 ms,虽然比YOLOv5s-Seg模型和YOLOv8s-Seg模型略有增加,但明显低于YOLOv7-Seg模型和Mask R-CNN模型。改进YOLOv8s-Seg模型在复杂环境下的番茄成熟度分割任务中表现出优异性能;无论是叶片遮挡、果实重叠,还是光照变化与角度变化,该模型均能实现高精度的分割效果。

关键词: 改进YOLOv8s-Seg模型, 番茄(Solanum lycopersicum L.), 成熟度, 检测

Abstract: To achieve real-time detection of tomato at different maturity stages, an improved YOLOv8s-Seg model was proposed to meet the precision management requirements of modern agriculture. By enhancing the neck module of the improved YOLOv8s-Seg model, a 1×1 SimConv layer was added before each upsampling operation, and the remaining conventional convolutions in the neck were replaced with 3×3 SimConv layers, significantly improving feature fusion capability. The results showed that the improved YOLOv8s-Seg model achieved segmentation precision rates of 92.7%, 92.3%, and 89.9% for mature, semi-mature, and immature tomatoes, respectively. Compared with the original YOLOv8s-Seg model, the improved YOLOv8s-Seg model demonstrated increases of 1.6, 0.4, 1.0, and 2.4 percentage points in precision, recall, F1-score, and mAP@0.5, respectively. The improved YOLOv8s-Seg model outperformed YOLOv8s-Seg, YOLOv5s-Seg, YOLOv7-Seg, and Mask R-CNN models in precision, recall, F1-score, and mAP@0.5. The inference time of the improved YOLOv8s-Seg model was 3.5 ms, showing a slight increase compared to YOLOv5s-Seg and YOLOv8s-Seg models, but remained significantly lower than YOLOv7-Seg and Mask R-CNN models.The improved YOLOv8s-Seg model exhibited superior performance in tomato maturity segmentation under complex environments, achieving high precision across scenarios involving leaf occlusion, fruit overlap, lighting variations, and viewpoint changes.

Key words: improved YOLOv8s-Seg model, tomato (Solanum lycopersicum L.), maturity, detection

中图分类号: