HUBEI AGRICULTURAL SCIENCES ›› 2022, Vol. 61 ›› Issue (22): 5-13.doi: 10.14088/j.cnki.issn0439-8114.2022.22.001
• Breeding & Cultivation • Next Articles
XIE Yi, NI Yan-lin, ZHU Hang, ZHU Ye-qing, ZHANG Yan, ZOU Hua-wen, ZHANG Bing-lin
Received:
2022-06-14
Online:
2022-11-25
Published:
2023-01-11
CLC Number:
XIE Yi, NI Yan-lin, ZHU Hang, ZHU Ye-qing, ZHANG Yan, ZOU Hua-wen, ZHANG Bing-lin. Response and resilience of different tolerance/susceptibility maize inbred lines to high temperature stress[J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(22): 5-13.
[1] CIAIS P,REICHSTEIN M,VIOVY N,et al.Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2005,437(7058):529-533. [2] NANCY B G, BRITTA B, PATRICK G, et al.The impacts of climate change on ecosystem structure and function[J]. Frontiers in ecology and the environment,2013,11(9): 474-482. [3] BRESHEARS D D, COBB N S, RICH P M, et al.Reginal vegetation die-off in response to global-change-type drought[J]. Proceedings of the national academy of sciences of the United States of America,2005,102: 15144-15148. [4] 杨秋珍, 李军, 王金霞, 等.高温胁迫下甜瓜生理生态特性研究[J].中国生态农业学报, 2003,11(1):20-22. [5] SUWA R, HAKATA H, E SHEMY H, et al. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize[J]. Plant physiology and biochemistry, 2010, 48(2-3):124-130. [6] AUSTIN R B,MORGAN C L,FORD M A.Flag leaf photosynthesis of [7] HETHERINGTON A M,WOODWARD F I.The role of stomata in sensing and driving environmental change[J]. Nature,2003, 424(6951): 901-908. [8] BUCKLEY T N,FARQUHAR G D,MOTT K A,et al.Qualitative effects of patchy stomatal conductance distribution features on gas-exchange calculations[J]. Plant,cell and environment,1997,20(7):867-880. [9] HAWORTH M, HEATH J, MCELWAIN J C, et al.Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of cupressaceae conifers[J]. Annals of botany, 2010, 105(3): 411-418. [10] TAYLOR S H, FRANKS P J, HULME S P, et al.Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses[J]. New phytologist, 2012, 193(2): 387-396. [11] WOODWARD F I.Stomatal numbers are sensitive to increases in CO2 from preindustrial levels[J]. Nature,1987, 327(6123): 617-618. [12] APPLE M E, OLSZYK D M, ORMROD D P, et al.Morphology and stomatal function of douglas fir needles exposed to climate change: Elevated CO2 and temperature[J]. International journal of plant science, 2000, 161(1): 127-132. [13] HOVENDEN M J.The influence of temperature and genotype on the growth and stomatal morphology of southern beech,Nothofagus cunninghamii[J]. Australian journal of botany,2001,49(4):427-434. [14] KOUWENBERG L R,KÜRSCHNER W M,MCELWAIN J C,et al. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry[J]. Reviews in mineralogy & geochemistry, 2007, 66(1): 215-241. [15] FRASER L H, GREENALL A, CARLYLE C, et al.Adaptive phenotypic plasticity of [16] SONG J Z, ZHOU Z M, KELLI A D, et al.Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development[J]. Current biology, 2018, 28(8):1273-1280. [17] 张立荣, 牛海山, 汪诗平, 等.增温与放牧对矮蒿草草甸4种植物气孔密度和气孔长度的影响[J].生态学报, 2010, 30(24):6961-6969. [18] 朱玉, 黄磊, 党承华, 等.高温对蓝莓叶片气孔特征和气体交换参数的影响[J]. 农业工程学报, 2016,32(1):218-225. [19] JUMRANI K C, VIRENDER S B, GOVIND P P, et al.Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean[J]. Photosynthesis research, 2017, 131(3):333-350. [20] ZHANG H, PAN C Z, GU S H, et al.Stomatal movements are involved in elevated CO2 mitigated high temperature stress in tomato[J]. Physiologia plantarum, 2019, 165(3):569-583. [21] 梁雯. 弱光,热锻炼及空气湿度处理对杜鹃花耐热性的影响[D]. 陕西杨凌:西北农林科技大学, 2019. [22] 单晶, 张慧, 王竹, 等.花期高温胁迫对不同耐热型夏玉米生理特性及产量的影响[J].山东农业科学, 2020,52(10):25-31. [23] 刘亮, 郝立华, 李菲, 等. CO2浓度和温度对玉米光合性能及水分利用效率的影响[J].农业工程学报, 2020,36(5):122-129. [24] ROBERT S C, YIN X J, JENNIFER S, et al.Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions[J]. Plant physiology, 2019, 221(1):371-384. [25] JOHN SUNOJ V S, SHROYER K J, KRISHNA JAGADISH S V, et al. Diurnal temperature amplitude alters physiological and growth response of maize ( [26] BRESTIC M, ZIVCAK M, KUNDERLIKOVA1 K, et al. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines[J]. Photosynthesis research, 2016,130(1-3):251-266. [27] JERRY L H, JOHN H P.Temperature extremes: Effect on plant growth and development[J]. Weather and climate extremes, 2015,10(12):4-10. [28] SANCHEZ C, BARANDA A B, DE MARANON I M, et al. The effect of high pressure and high temperature processing on carotenoids and chlorophylls content in some vegetables[J]. Food chemistry, 2014,163(15):37-45. [29] CAMEJO D, RODRIGUEZ P, MORALES M A, et al.High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility[J]. Journal of plant physiology, 2005,162(3):281-289. [30] 吴冰洁. 叶片生长过程中气孔发育状态对光合作用气孔限制和叶温调节的影响[D].北京:北京林业大学,2015. [31] LI Y P, LI H B, LI Y Y, et al.Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat[J]. The crop journal, 2017,5(3):231-239. [32] ZHAO X H, DU Q, ZHAO Y, et al.Effects of different potassium stress on leaf photosynthesis and chlorophyll fluorescence in maize at seedling stage[J]. Agricultural sciences, 2016,7(1):44-53. [33] ABDULKADIR M, KELVIN M, PATRICK N, et al.Effect of rhizobium inoculation and supplementation with phosphorus and potassium on growth and total leaf chlorophyll content of bush bean phaseolus vulgaris[J]. Agricultural sciences, 2014,5:1413-1426. [34] XU Z Z, ZHOU G S.Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of experimental botany, 2008, 59(12):3317-3325. [35] HAO L H, GUO L L, LI R Q, et al.Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry[J]. Scientia horticulturae, 2019, 246(27): 251-264. [36] FELLER U. Stomatal opening at elevated temperature: An underestimated regulatory mechanism[J]. Plant physiology,2006,special issue :19-31. [37] MCAUSLAND L,VIALET-CHABRAND S, MATTHEWS J, et al.Spatial and temporal responses in stomatal behaviour, photosynthesis and implications for water-use efficiency[M]. Springer: Phythms in plants, 2015.97-119. [38] LU Z M, RICHARD G P, CALVIN O Q, et al.Stomatal conductance predicts yields in irrigated pima cotton and bread wheat grown at high temperatures[J]. Journal of experimental botany,1998,49(S):453-460. [39] CRAWFORD A J, MCLACHLAN D H, HETHERINGTON A M, et al.High temperature exposure increases plant cooling capacity[J]. Current biology, 2012,22(10):396-397. [40] 王宏亮,郭思义,王棚涛,等.植物气孔发育机制研究进展[J].植物学报, 2018, 53(2): 164-174. [41] MACALISTER C, OHASHI-ITO K,BERGMANN D, et al.Transcription factor control of asymmetric cell divisions that establish the stomatal lineage[J]. Nature, 2007,445(7127):537-540. [42] GREGORY R L.The missing link [43] KIM T W, MICHNIEWICZ M, BERGMANN D, et al.Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway[J]. Nature,2012,482(7385): 419-422. [44] STUART C, JULIE E.Gray. Influence of environmental factors on stomatal development[J]. New phytologist, 2008, 178(1):9-23. [45] ON SUN LAU, SONG Z J, ZHOU Z M, et al.Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development[J]. Current biology, 2018,28(8): 1273-1280. [46] 张洁,李天来. 短时间亚高温处理及其恢复对番茄光合特性的影响[J]. 农业工程学报,2007,23(1):162-167. [47] 唐婷,郑国伟,李唯奇.高山植物圆锥南芥的光合系统耐热性及其修复机制[J].植物分类与资源学报,2015,37(1):46-54. |
[1] | XIE Xiao-dong, ZHOU Hai-yu, ZHOU Jin-guo, JIANG Yu-feng, QIN Lan-qiu, XIE He-xia, TAN Zhao-lei, CHENG Wei-dong. Breeding of new maize variety Guidan 902 with high and stable yield and suitable for machine harvesting [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(9): 5-7. |
[2] | CHEN Ding. The physiological characteristic and molecular regulatory mechanism of grain filling in maize [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(6): 5-7. |
[3] | YU Kan, AI Shu-zhi, ZHA Sheng, HUANG Si-si, CAI Duan-wu, LONG Xiao-ling, HE Zheng-hua, HUANG Yi-qin, ZHENG Wei. Effects of bio-organic selenium on agronomic and economic characters and grain selenium content of maize [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(6): 18-22. |
[4] | CHANG Xiang-qian, LYU Liang, XU Dong, WAN Peng, ZHANG Shu, SU Hai-yan. Simulation of the competition between Spodoptera frugiperda and Mythimna separata indoors [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(6): 61-65. |
[5] | ZHANG Li-li, FAN Ye, XUE Bing-dong, MO Jiao-jiao, YANG Hai-long, FU Jun. Effects of lime application on acid soil amelioration and maize plant growth in southeastern of Liaoning [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(5): 23-26. |
[6] | CAO Yu-dong, YIN Mei-xiao, TIAN Yong-lan, ZHANG Hua-yong. Effect of biogas fertilizers on seed germination and growth of maize [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(5): 36-40. |
[7] | ZHANG Hong-ni, ZHANG Hong-fen, HE Shu-zhou, ZHOU Zhong-wen, CHE Xiang-jun. Effects of summer climate change on spring maize development and yield in the Loess Plateau of Eastern Gansu [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(5): 165-170. |
[8] | XI Xiao-qian, LI Hong, WANG Rui-jun, ZHANG Xu-li. Evaluation of disease resistance of maize varieties based on principal component analysis [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(4): 78-80. |
[9] | DONG Zhe, BIAN Li-mei, ZHENG Wei, ZHANG Li-yan, ZHANG Hao, MENG Fan-sheng. Effects of different film mulching methods on yield and water use efficiency of maize [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(3): 32-35. |
[10] | XU Xiang-yu, ZHOU Jian-xiong, YU Da-zhao, XIANG Li-bo, YUAN Jia-fu, ZHENG Lei, ZHANG Qiang. Effects of controlled-release mixed fertilizer on ammonia volatilization and fertilizer nutrient recovery rate of double maize cropping system [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(21): 62-66. |
[11] | LI Xiang-yang, GU Zhu-yu, ZHANG Xi-qiang, ZHANG Jian-yun, LI Gang, HUANG Xue-shun, XU Wei. Study on the remediation effect of soil conditioner and organic fertilizer on Cd-contaminated farmland [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(20): 22-27. |
[12] | MIAO Chun-qing, CAI Zi-wen, ZHENG Rong, BAI Jing, WANG Juan, WANG Tuo-he, WANG Xue-qiang. Research on optimal irrigation of Hexi seed production maize based on entropy method, AHP and TOPSIS model [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(16): 12-17. |
[13] | XIE Yuan-yuan, XIONG You-sheng, SUN Chen, LI Jia-ying, ZHOU Jian-xiong, XU Fang-sen. Effects of coated urea and nitrogen fertilizer synergist on growth and yield of fresh maize [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(16): 35-39. |
[14] | LI Jie-mei, XIE Xiao-dong, ZENG Yuan, ZHOU Hai-yu, JIANG Yu-feng, QIN Lan-qiu, XIE He-xia, CHENG Wei-dong. Adaptability analysis of Chinese maize varieties in Myanmar [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(15): 5-9. |
[15] | ZHANG Ai-ming, LIU Su-lan, YU Hong-xi, ZHU Jian-yu, XU Yu-mei. Effects of different planting years of maize on soil nitrogen and phosphorus in agro-pastoral ecotone [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(14): 74-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||