[1] 秦晓晓,宋婷婷,张杰,等.观赏海棠McF3′H的克隆及不同品种间表达差异分析[J].北京农学院学报,2013,28(2):11-14. [2] 梁明炜,刘海峰,陆雪莹,等.棕色棉类黄酮3′-羟化酶基因(F3′H)的克隆及色素合成途径中相关基因表达特性研究[J].农业生物技术学报,2011,19(5):808-815. [3] BRUGLIERA F, BARRI-REWELL G, HOLTON T A, et al.Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida[J]. Plant journal, 1999, 19(4):441-451. [4] 侯杰,佟玲,崔国新,等.植物类黄酮3’-羟化酶(F3′H)基因的研究进展[J].植物生理学报,2011,47(7):641-647. [5] FRITSCH H, GRISEBACH H.Biosynthesis of cyanidin in cell cultures of Haplopappus gracilis[J]. Phytochemistry, 1975, 14(11): 2437-2442. [6] 刘兴华,刘艳艳,丁颖,等.从《大麦通讯》至《大麦与谷类科学》的历程——纪念创刊40周年[J].大麦与谷类科学,2024,41(1):78-80. [7] 冯格格,佘永新,洪思慧,等.青稞中主要功效成分最新研究进展[J].农产品质量与安全,2020(2):82-89. [8] 韦永贵,董卓娅,张晓磊,等.紫米米糠中原花青素提取工艺与测定[J].农产品加工,2024(8):67-70. [9] SCHULER M A.Plant cytochrome P450 monooxygenases[J]. Critical reviews in plant sciences, 1996, 15(3): 235-284. [10] CHAPPLE C.Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases[J]. Annual review of plant biology, 1998, 49(1): 311-343. [11] 苏丽,赵昶灵,杨晓娜,等.高等植物F3′H cDNA及其氨基酸序列的生物信息学分析[J].云南农业大学学报(自然科学版),2010,25(3):316-326. [12] 刘艳玲. F3′H基因在植物逆境胁迫应答中的功能研究[D].济南:山东大学,2021. [13] 赵建琦. 用拟南芥锌转运体基因AtZIP4启动子培育缺锌指示烟草[D].南京:南京农业大学,2015. [14] HOLTON T A, CORNISH E C.Genetics and biochemistry of anthocyanin biosynthesis[J]. The plant cell, 1995, 7(7): 1071. [15] 龙彩凤,刘林娅,赵艳妹,等.果实花青素合成关键酶及其转录调控因子[J/OL].分子植物育种,1-12(2023-07-17)[2024-05-27].http://kns.cnki.net/kcms/detail/46.1068.S.20230717.1108.002.html. [16] 曹睿彬,杨俊杰,罗常莎,等.青冈栎原花青素合成基因的鉴定与分析[J].中南林业科技大学学报,2024,44(5):167-180. [17] XU B B, LI J N, ZHANG X K, et al.Cloning and molecular characterization of a functional flavonoid 3′-hydroxylase gene from Brassica napus[J]. Journal of plant physiology, 2007, 164(3): 350-363. [18] 刘海峰,杨成君,赵权,等.山葡萄中类黄酮3′-羟化酶基因(F3′H)cDNA的克隆和分析[J].植物生理学通讯,2009,45(12):1186-1190. [19] 李双江,朱冬寅,秦东,等.苦荞类黄酮3′-羟化酶基因的克隆及其冷胁迫下的组织表达[J].中草药,2014,45(9):1300-1306. [20] 李爽,赵宏友,杨春勇,等.国产龙血竭基原植物类黄酮3′-羟化酶基因(F3′H)克隆及表达分析[J].分子植物育种,2024, 22(19):6310-6317. [21] 吴红松,秋田祐介.松果菊F3′H基因的克隆及表达分析[J].生物化工,2022,8(3):84-86. [22] 陈延惠,曹新悦,冯志良,等.石榴F3′H全基因组分析及其在籽粒花色苷合成中的作用[J].果树学报,2024,41(6):1064-1077. [23] VIKHOREV A V, STRYGINA K V, KHLESTKINA E K.Duplicated flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes in barley genome[J]. PeerJ, 2019, 7: e6266. [24] 胡利宗,张佳慧,王秋霞,等.植物F3′H基因的序列与进化分析[J].东北农业大学学报,2015,46(3):41-49. [25] JIA Y, LI B, ZHANG Y J, et al.Evolutionary dynamic analyses on monocot flavonoid 3′-hydroxylase gene family reveal evidence of plant-environment interaction[J]. BMC plant biology, 2019, 19:347. [26] 赵权. 山葡萄花色苷生物合成结构基因F3′H和F3′5′H的表达[J].贵州农业科学,2015,43(9):7-10. [27] 黄文坤,程红梅,郭建英,等.紫茎泽兰类黄酮3′-羟化酶基因的克隆、序列分析和原核表达[J].植物生理学通讯,2007(5):821-826. [28] CASTELLARIN S D, DI GASPERO G, MARCONI R, et al.Colour variation in red grapevines (Vitis vinifera L.): Genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin[J]. BMC genomics, 2006, 7:12. [29] 周晨露. 转录因子Ant1和Ant2调控大麦籽粒花青素合成的分子机制及遗传改良研究[D].杭州:浙江大学,2021. [30] GONZALEZ A, ZHAO M, LEAVITT J M, et al.Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. The plant journal, 2008, 53(5): 814-827. [31] DONG X, BRAUN E L, GROTEWOLD E.Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes[J]. Plant physiology, 2001, 127(1): 46-57. [32] HAN Y, VIMOLMANGKANG S, SORIA-GUERRA R E, et al. Ectopic expression of apple F3′H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress[J]. Plant physiology, 2010, 153(2): 806-820. [33] 邹庆军,汪涛,郭巧生,等.淹水胁迫对杭菊F3′H基因表达及其下游产物含量的影响[J].中国中药杂志,2018,43(1):52-57. [34] CASTELLARIN S D, MATTHEWS M A, DI GASPERO G, et al.Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries[J]. Planta, 2007, 227(1): 101-112. [35] DELA G, OR E, OVADIA R, et al.Changes in anthocyanin concentration and composition in ‘Jaguar’rose flowers due to transient high-temperature conditions[J]. Plant science,2003,164(3):333-340. [36] ZHU Z, WEI L, GUO L, et al.Integrated full-length transcriptome and metabolome profiling reveals flavonoid regulation in response to freezing stress in potato[J]. Plants, 2023, 12(10): 2054. [37] KIM J Y, KANG Y E, LEE S I, et al.Sound waves affect the total flavonoid contents in Medicago sativa, Brassica oleracea and Raphanus sativus sprouts[J]. Journal of the science of food and agriculture, 2020, 100(1): 431-440. [38] YU Y, HUANG J, DENG Z, et al.Soil application of Bacillus subtilis regulates flavonoid and alkaloids biosynthesis in mulberry leaves[J]. Metabolites, 2024, 14(4): 180. [39] SOLFANELLI C,POGGI A,LORETI E, et al.Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis[J]. Plant physiology, 2006,140(2):637-646. [40] SUN B, SHEN Y, CHEN S, et al.A novel transcriptional repressor complex MYB22-TOPLESS-HDAC1 promotes rice resistance to brown planthopper by repressing F3′H expression[J]. New phytologist, 2023, 239(2): 720-738. [41] SCHULER M A.The role of cytochrome P450 monooxygenases in plant-insect interactions[J]. Plant physiology,1996,112(4): 1411. [42] BODDU J, SVABEK C, SEKHON R, et al.Expression of a putative flavonoid 3′-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins[J]. Physiological and molecular plant pathology, 2004, 65(2): 101-113. [43] MIZUNO H, YAZAWA T, KASUGA S, et al.Expression level of a flavonoid 3′-hydroxylase gene determines pathogen-induced color variation in sorghum[J]. BMC research notes, 2014, 7: 1-12. [44] VARSHNEY R K, LANGRIDGE P, GRANER A.Application of genomics to molecular breeding of wheat and barley[J]. Advances in genetics, 2007, 58: 121-155. [45] The International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome[J]. Nature, 2012, 491: 711-716. [46] MASCHER M, GUNDLACH H, HIMMELBACH A, et al.A chromosome conformation capture ordered sequence of the barley genome[J]. Nature, 2017, 544(7651): 427-433. [47] PECCHIONI N, VALE G, TOUBIA-RAHME H, et al.Barley—Pyrenophora graminea interaction: QTL analysis and gene mapping[J]. Plant breeding, 1999,118(1):29-35. [48] PEUKERT M, WEISE S, RÖDER M S, et al. Development of SNP markers for genes of the phenylpropanoid pathway and their association to kernel and malting traits in barley[J]. BMC genetics, 2013, 14: 1-16. [49] DRUKA A, KUDRNA D, ROSTOKS N, et al.Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): Physical, genetic and mutation mapping[J]. Gene,2003,302(1-2): 171-178. [50] KHLESTKINA E K, SALINA E A, MATTHIES I E, et al.Comparative molecular marker-based genetic mapping of flavanone 3-hydroxylase genes in wheat, rye and barley[J]. Euphytica, 2011, 179: 333-341. [51] WISE R P, ROHDE W, SALAMINI F.Nucleotide sequence of the Bronze-1 homologous gene from Hordeum vulgare[J]. Plant molecular biology, 1990, 14(2): 277-279. [52] STRYGINA K V, BÖRNER A, KHLESTKINA E K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone[J]. BMC plant biology, 2017, 17: 1-9. [53] SHOEVA O Y, MOCK H P, KUKOEVA T V, et al.Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare[J]. PloS one,2016,11(10): e0163782. [54] JENDE‐STRID B. Genetic control of flavonoid biosynthesis in barley[J]. Hereditas, 1993, 119(2): 187-204. [55] 诸姮,胡宏友,卢昌义,等.植物体内的黄酮类化合物代谢及其调控研究进展[J].厦门大学学报(自然科学版),2007, 46(S1):136-143. [56] 张智新. 甘草COMT、CRTZ和F3′H基因对甘草酸生物合成的影响研究[D].北京:北京中医药大学,2022. [57] 贺军与,钟伟,陈云琼,等.大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J].作物学报,2021,47(8):1624-1630. [58] 张航. 云啤2号×大粒麦F2群体籽粒功能成分的遗传及其QTL分析[D].昆明:云南大学,2012. [59] 凌俊红,王楠,任玉珍,等.HPLC法测定大麦芽中麦黄酮[J].中草药,2005(11):1632-1634. |