[1] 马忠华,陈云,尹燕妮.小麦赤霉病流行成灾原因分析及防控对策探讨[J].中国科学基金,2020,34(4):464-469. [2] MISHRA S,SRIVASTAVA S,DEWANGAN J,et al.Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey[J].Critical reviews in food science and nutrition,2020,60(8):1346-1374. [3] GB/T2761—2022,食品安全国家标准食品中真菌毒素限量[S]. [4] 段亚冰,周明国.我国小麦赤霉病流行与化学防控现状及控病降毒关键技术理论创新与应用[J].现代农药,2024,23(2):13-21. [5] 陈宏州,吴佳文,庄义庆,等.不同杀菌剂对小麦赤霉病及籽粒DON毒素的控制效果[J].植物保护,2021,47(6):307-317. [6] LANCASTER C R D. Succinate: Quinone oxidoreductases: An overview[J].Biochimica et biophysica acta: BBA-bioenergetics,2002,1553(1-2):1-6. [7] 魏阁,高梦琪,朱晓磊,等.靶向琥珀酸脱氢酶的酰胺类杀菌剂的研究进展[J].农药学学报,2019,21(S1):673-680. [8] 杨绍华. 农抗“1465”的筛选及防治小麦赤霉病试验简报[J].福建稻麦科技,1983(3):38-41. [9] 李宏伟,张扬,郑斐,等.5种杀菌剂对小麦赤霉病的活性测定方法比较[J].世界农药,2022,44(6):54-60. [10] 毛玉帅,段亚冰,周明国,等.琥珀酸脱氢酶抑制剂类杀菌剂抗性研究进展[J].农药学学报,2022,24(5):937-948. [11] SHAO W Y,WANG J R,WANG H Y,et al.Fusarium graminearum FgSdhC1 point mutation A78V confers resistance to the succinate dehydrogenase inhibitor pydiflumetofen[J].Pest management science,2022,78(5): 1780-1788. [12] SUN H Y,CUI J H,TIAN B H,et al.Resistance risk assessment for Fusarium graminearum to pydiflumetofen, a new succinate dehydrogenase inhibitor[J].Pest management science,2020,76(4):1549-1559. [13] ZHOU F,ZHOU H H,HAN A H,et al.Mechanism of pydiflumetofen resistance in Fusarium graminearum in China[J].Journal of fungi,2022,9(1):62. [14] CHEN W C,WEI L L,ZHAO W C,et al.Resistance risk assessment for a novel succinate dehydrogenase inhibitor pydiflumetofen in Fusarium asiaticum[J].Pest management science,2021,77(1):538-547. [15] PALAZZINI J,REYNOSO A,YERKOVICH N,et al.Combination of Bacillus velezensis RC218 and chitosan to control Fusarium head blight on bread and durum wheat under greenhouse and field conditions[J].Toxins, 2022,14(7):499. [16] 刘悦,曾凡松,龚双军,等.解淀粉芽胞杆菌EA19菌株对小麦赤霉病的防治效果[J].植物保护学报,2020,47(6):1270-1276. [17] 陈文华,殷宪超,武德亮,等.小麦赤霉病生物防治研究进展[J].江苏农业科学,2020,48(4):12-18. [18] 黄慧婧,罗坤.芽孢杆菌与杀菌剂复配防治植物病害的研究进展[J].微生物学通报,2021,48(3):938-947. [19] 王文肖,刘美玲,阙亚伟,等.贝莱斯芽孢杆菌EA19与多菌灵复配防治小麦赤霉病研究[J].河南农业科学,2024,53(10):117-126. [20] 张震,邱海萍,柴荣耀,等.一株小麦赤霉病生防菌的鉴定及其生防机制初探[J].中国生物防治学报,2022,38(3):673-680. [21] 毛雪琴,彭志荣,邱海萍,等.生防菌株MT-06发酵条件及复配杀菌剂对小麦赤霉病的防效[J].浙江农业科学,2013,54(7):821-824. [22] 曾凡松,向礼波,杨立军,等.一株内生细菌EA19的分离鉴定及其对小麦白粉病菌的抑制效果[J].湖北农业科学,2012,51(23):5344-5347. [23] ZENG F S,YUAN B,SHI W Q,et al.Complete genome sequence of Bacillus amyloliquefaciens EA19, an endophytic bacterium with biocontrol potential isolated from Erigeron annuus[J].Microbiology resource announcements,2021,10(39):e00753-21. [24] NY/T2293.1—2012,细菌微生物农药枯草芽孢杆菌第1部分:枯草芽孢杆菌母药[S]. [25] 张宗炳. 杀虫药剂的毒力测定——原理·方法·应用[M].北京:科学出版社,1988.396-398. [26] HALL B G.Building phylogenetic trees from molecular data with MEGA[J].Molecular biology and evolution, 2013,30(5):1229-1235. [27] 国家药典委员会.中华人民共和国药典三部 2020年版[M].北京:中国医药科技出版社,2020.219-224. [28] 黄国洋. 农药试验技术与评价方法[M].北京:中国农业出版社,2000.30-31. [29] 杨胜雨,杨飞,段海明,等.生防菌代谢物与杀菌剂复配对花生褐斑病菌的抑制活性[J].江汉大学学报(自然科学版),2023,51(2):61-67. [30] NY/T1464.15—2007,农药田间药效试验准则第15部分:杀菌剂防治小麦赤霉病[S]. [31] ZHU X L,XIONG L,LI H,et al.Computational and experimental insight into the molecular mechanism of carboxamide inhibitors of succinate-ubquinone oxidoreductase[J].Chem Med Chem,2014, 9(7):1512-1521. [32] 赵雅,张岱,杨志辉,等.贝莱斯芽胞杆菌HN-Q-8菌株发酵液稳定性测定及抑菌活性成分分析[J].微生物学通报,2020,47(2):490-499. [33] HANIF A,ZHANG F,LI P P,et al.Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis[J].Toxins,2019,11(5):295. [34] 毕秋艳,韩秀英,马志强,等.枯草芽胞杆菌HMB-20428与化学杀菌剂互作对葡萄霜霉病菌抑制作用和替代部分化学药剂减量用药应用[J].植物保护学报,2018,45(6):1396-1404. [35] 王叶青,刘芳,潘纪源,等.巨大芽孢杆菌与噁霉灵联用对甜瓜连作障碍的缓解效果[J].农药学学报,2022,24(4):762-770. |