[1] 曾丽. 鱼鳔胶原蛋白肽抗氧化与抗疲劳活性研究[D]. 浙江舟山: 浙江海洋学院, 2014. [2] BUTTERFIELD D A, CASTEGNA A, DRAKE J, et al.Vitamin E and neurodegenerative disorders associated with oxidative stress[J]. Nutritional neuroscience, 2002, 5(4): 229-239. [3] HALLIWELL B, GUTTERIDGE J M, CROSS C E.Free radicals, antioxidants, and human disease: Where are we now?[J]. Journal of laboratory & clinical medicine, 1992, 119(6): 598-620. [4] 曹小舟, 刘永祥, 俞凌, 等. 植物蛋白源抗氧化肽活性的评价方法及作用机制的研究进展[J]. 食品工业科技, 2016, 37(13): 355-359. [5] 尤娟. 鲢鱼鱼肉蛋白抗氧化肽的制备及其糖基化产物功能特性的研究[D]. 北京: 中国农业大学, 2014. [6] 刘文颖, 张铭皓, 高丽辉, 等. 体外消化对三文鱼皮胶原低聚肽抗氧化活性的影响[J]. 食品工业科技, 2021, 42(1): 317-321. [7] 贾韶千, 李艳霞. 黄鳝鱼骨多肽制备及其抗氧化活性[J]. 食品科学, 2016, 37(1): 133-138. [8] 李娜,周德庆,刘楠,等. 鳕鱼鱼鳔抗氧化肽制备工艺研究[J]. 渔业科学进展,2020, 41(2): 191-199. [9] 王安, 武瑞赟, 谭春明, 等. 鱼籽营养成分及相关产品的研究进展[J]. 中国水产,2021(8): 84-86. [10] 普家勇, 张红云. 鱼籽酱和鱼籽的加工工艺[J]. 渔业致富指南, 2006, 16(2): 48-49. [11] 郝淑贤, 何丹, 魏涯, 等. 鱼卵加工产品类型与鱼籽酱保鲜技术研究进展[J]. 南方水产科学, 2014, 10(3): 104-108. [12] JIANG S Q, ZHANG Z W, YU F M, et al.Ameliorative effect of low molecular weight peptides from the head of red shrimp (Solenocera crassicornis) against cyclophosphamide-induced hepatotoxicity in mice[J]. Journal of functional foods, 2020, 72: 104085. [13] JIANG S Q, ZHANG Z W, HUANG F F, et al.Protective effect of low molecular weight peptides from Solenocera crassicornis head against cyclophosphamide-induced nephrotoxicity in mice via the Keap1/Nrf2 pathway[J]. Antioxidants, 2020, 9: 745. [14] LI Y, LI J, LIN S J, et al.Preparation of antioxidant peptide by microwave-assisted hydrolysis of collagen and its protective effect against H2O2-induced damage of RAW264.7 cells[J]. Marine drugs, 2019, 17(11): 642. [15] ZHENG J W, TIAN X X, XU B G, et al.Collagen peptides from swim bladders of giant croaker (Nibea japonica) and their protective effects against H2O2-induced oxidative damage toward human umbilical vein endothelial cells[J]. Marine drugs,2020, 18(8): 430. [16] WANG W, ZHANG F, LI Q, et al.Structure characterization of one polysaccharide from Lepidium meyenii Walp., and its antioxidant activity and protective effect against H2O2-induced injury RAW264.7 cells[J]. International journal of biological macromolecules, 2018, 118: 816-833. [17] HOLMSTRM K M, FINKEL T.Cellular mechanisms and physiological consequences of redox-dependent signaling[J]. Nature reviews molecular cell biology, 2014, 15(6): 411-421. [18] TAO Q, ZHE R, LIU X P, et al.Study of the selenizing Codonopsis pilosula polysaccharides protects RAW264.7 cells from hydrogen peroxide-induced injury[J]. International journal of biological macromolecules, 2019, 125: 534-543. [19] JIN J E, AHN C B, JE J Y.Purification and characterization of antioxidant peptides from enzymatically hydrolyzed ark shell (Scapharca subcrenata)[J]. Process biochemistry,2018,72: 170-176. [20] CHI C F, CAO Z H, WANG B, et al.Antioxidant and functional properties of collagen hydrolysates from Spanish mackerel skin as influenced by average molecular weight[J]. Molecules,2014, 19(8):11211-11230. [21] WANG L Y, DING L, YU Z P, et al.Intracellular ROS scavenging and antioxidant enzyme regulating capacities of corn gluten meal-derived antioxidant peptides in HepG2 cells[J]. Food research international, 2016, 90: 33-41. [22] CAI S Y, WANG Y M, ZHAO Y Q, et al.Cytoprotective effect of antioxidant pentapeptides from the protein hydrolysate of swim bladders of Miiuy Croaker (Miichthys miiuy) against H2O2-mediated human umbilical vein endothelial cell (HUVEC) injury[J]. International journal of molecular sciences, 2019, 20(21): 5425. [23] DANIEL BEDOYA-RAMÍREZ, CILLA A, JOSÉ CONTRERAS-CALDERÓN, et al. Evaluation of the antioxidant capacity, furan compounds and cytoprotective/cytotoxic effects upon Caco-2 cells of commercial Colombian coffee[J]. Food chemistry, 2017, 219: 364-372. |