[1] REHMAN S U, YANG J W, ZHANG J, et al.Salt stress in wheat: A physiological and genetic perspective[J]. Plant stress, 2025, 16: 100832. [2] RODRÍGUEZ L H, MORALES D A, RODRÍGUEZ E R, et al. Minerals and trace elements in a collection of wheat landraces from the Canary Islands[J]. Journal of food composition and analysis, 2011, 24(8): 1081-1090. [3] DU Y, WU Q, LU X, et al.Dissecting the genetic architecture of microelement accumulation in wheat grains through genome-wide association study[J/OL]. Journal of integrative agriculture.[2025-06-16].https://doi.org/10.1016/j.jia.2025.04.031. [4] KUMAR A, NAYAK L, BISWAL M, et al.Micronutrient enrichment in cereals: A long-term sustainable approach for nutritional security[J]. Trends in food science & technology, 2025, 160: 105012. [5] 陈涛,廖睿,吕大树,等.微量元素对烟草质量的影响及管理对策[J].植物医学,2025,4(2):59-66. [6] HUSSEIN A S, ABEED A H A, USMAN A R A, et al. Conventional vs. nano-micronutrients as foliar fertilization for enhancing the quality and nutritional status of pomegranate fruits[J]. Journal of the Saudi society of agricultural sciences, 2024, 23(2): 112-122. [7] MIM J J, MAKSUDUR RAHMAN S M, KHAN F, et al. Towards smart agriculture through nano-fertilizer-a review[J]. Materials today sustainability, 2025, 30: 101100. [8] COELHO A, ANDRÉIA CAVALARI A, HADDAD P, et al. Nanofertilizers for enhancing food production: A case study on microgreens enrichment using superparamagnetic iron oxide nanoparticles (SPIONs)[J]. Food chemistry, 2025, 463: 141364. [9] HANIF S, JAVED R, CHEEMA M, et al.Harnessing the potential of zinc oxide nanoparticles and their derivatives as nanofertilizers: Trends and perspectives[J]. Plant nano biology,2024,10: 100110. [10] HUANG S Y, QIN H S, JIANG D H, et al.Bio-nano selenium fertilizer improves the yield, quality, and organic selenium content in rice[J]. Journal of food composition and analysis, 2024, 132: 106348. [11] ASADI E, GHEHSAREH A M, MOGHADAM E G, et al.Improvement of pomegranate colorless arils using iron and zinc fertilization[J]. Journal of cleaner production, 2019, 234: 392-399. [12] SZUPLEWSKA A, SIKORSKI J, MATCZUK M, et al.Enhanced edible plant production using nano-manganese and nano-iron fertilizers: Current status, detection methods and risk assessment[J]. Plant physiology and biochemistry, 2023, 199: 107745. [13] MUSTAFA M, AZAM M, NAWAZ BHATTI H, et al.Green fabrication of copper nano-fertilizer for enhanced crop yield in cowpea cultivar: A sustainable approach[J]. Biocatalysis and agricultural biotechnology, 2024, 56: 102994. [14] 韩张雄,和文祥,王曦婕,等.钼作用下油菜对镉胁迫的生理生化响应及其对镉吸收的特征[J].环境科学学报,2020,40(9):3463-3472. [15] JAMIL ABBASI A, ANAS M, ELAHI M, et al.Restoring wheat productivity and nutrient balance under cadmium stress through reducing toxicity, metal uptake, and oxidative damage using selenium nanoparticles[J]. Journal of trace elements in medicine and biology, 2025, 89: 127644. [16] 李可,顾大路,杜小凤,等.二氢卟吩铁可溶粉剂不同使用方式及用量对小麦生长的影响[J].中国农学通报,2024,40(3):33-40. [17] BHATIA A, KHATRI A, YADAV M, et al.Potential of iron oxide nanoparticles in enhancing growth and development of plants: A review[J]. Physiological and molecular plant pathology, 2025, 139: 102746. [18] KRESLAVSKI V D, SHMAREV A N, IVANOV A A, et al.Effects of iron oxide nanoparticles (Fe3O4) and salinity on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum)[J]. Functional plant biology, 2023, 50(11): 932-940. [19] 张博文,靳海洋,许海霞,等.花后喷施氨基酸螯合锌对小麦籽粒淀粉和蛋白质合成积累的影响[J].河南农业科学,2025, 54(3):8-19. [20] 杨任涛. 叶面喷施纳米氧化锌用量对不同密度冬小麦光合特性、产量及锌利用效率的影响[D].陕西杨凌:西北农林科技大学,2024. [21] LI C, LI G X, WANG Y, et al.Supplementing two wheat genotypes with ZnSO4 and ZnO nanoparticles showed differential mitigation of Cd phytotoxicity by reducing Cd absorption, preserving root cellular ultrastructure, and regulating metal-transporter gene expression[J]. Plant physiology and biochemistry, 2024, 206: 108199. [22] 连加攀. 叶面纳米锌肥对小麦籽粒锌营养强化与镉阻控效应及作用机制[D].杭州:浙江大学,2024. [23] DING M L, KONG Y X, LIU J, et al.Evaluation of the ameliorative role of soil amendments and selenium on morphophysiological traits, oxidative stress, and quality attributes of wheat (Triticum aestivum L.) under varying drought stress conditions[J]. Journal of hazardous materials advances, 2025, 18: 100693. [24] KUMAR A, PRASAD K S.Role of nano-selenium in health and environment[J]. Journal of biotechnology, 2021, 325: 152-163. [25] 余侃,段炼,黄思思,等.微生物制备纳米硒的研究进展[J].中南农业科技,2024,45(12):211-217. [26] 刘梦竹. 纳米硒对水稻籽粒硒含量、稻米品质及香气含量的影响[D].江苏扬州:扬州大学,2024. [27] MOUSAZADEH Y, ZAND Z, AKBARI N, et al.Manganese-based molecular systems in catalytic oxygen-evolution reaction: The role of nanoparticles, challenges, and opportunities[J]. Coordination chemistry reviews, 2025, 541: 216805. [28] PAVLICEVIC M, ZHOU J Y, AMMIRATA M A, et al.Manganese nanoparticles synthesized from hemp biomass waste modulate metabolic responses in soybean[J]. Plant physiology and biochemistry, 2025, 225: 109992. [29] 王鎏帆,冉玉玲,张国超,等.植物抗铜毒害机制的研究进展[J].安徽农业科学,2024,52(24):23-28,32. [30] 符光捷,黄磊云,白正林,等.铜基纳米颗粒及含铜抗菌内植物的研究进展[J].组织工程与重建外科,2025,21(1):93-100. [31] RAMÍREZ-VALDESPINO C A, MORALES-GARCÍA M, HERRERA-PÉREZ G, et al. Exploring the impact of copper oxide nanoparticles on the biocontrol activity and plant growth promotion of Trichoderma asperellum[J]. Journal of hazardous materials letters, 2025, 6: 100147. [32] 秦晓明,赵优优,武松伟,等.钼提高植物抗逆性研究进展[J].华中农业大学学报,2023,42(6):50-58. [33] 张海鹏,李莞意,廖福兴,等.纳米钼对水稻根系形态生理和硝态氮吸收的影响[J/OL].中国水稻科学, 2025: 1-27[2025-06-16].https://link.cnki.net/urlid/33.1146.S.20250512.1124.008. [34] HE Y X, CHEN Q, FENG R B, et al.Molybdenum disulphide nanoparticles accelerate the transformation of levofloxacin in planting soil upon exposure[J]. Chemosphere, 2024, 363: 142798. [35] HULIAIEVA H, TOKOVENKO I, BOHDAN M, et al.Adaptation of lentils to high-temperature stress at phytopathogenic infection and application of molybdenum nanoparticles[J]. Advanced agrochem.[2025-06-16]. https://doi.org/10.1016/j.aac.2025.03.003. [36] HERNÁNDEZ-HERNÁNDEZ H, JUÁREZ-MALDONADO A. Nano-biofortifying crops with micronutrients and beneficial elements: Toward improved global nutrition[J]. Food bioscience, 2025, 69: 106848. [37] 赵波. 籽粒富锌铁差异水稻品种锌铁吸收利用特性研究[D].合肥:安徽农业大学,2023. [38] QU L L, XU Z C, HUANG W X, et al.Selenium-molybdenum interactions reduce chromium toxicity in Nicotiana tabacum L. by promoting chromium chelation on the cell wall[J]. Journal of hazardous materials, 2024, 461: 132641. [39] GUI J Y, RAO S, HUANG X R, et al.Interaction between selenium and essential micronutrient elements in plants: A systematic review[J]. Science of the total environment, 2022, 853: 158673. [40] GAO S, TANG X Q, ZHANG J B, et al.Zinc-selenium interaction regulates leaf photosynthesis and mediates grain sugar metabolism to improve the yield and quality of hybrid rice: A physiological perspective[J]. Plant physiology and biochemistry, 2025, 221: 109611. [41] DEMIREVSKA-KEPOVA K, SIMOVA-STOILOVA L, STOYANOVA Z, et al.Biochemical changes in barley plants after excessive supply of copper and manganese[J]. Environmental and experimental botany, 2004, 52(3): 253-266. [42] 张枥分,张丽娜,王晓玲,等.喷施纳米铁和纳米锌叶面肥对冬枣叶片及果实品质的影响[J].北方园艺,2024(11):23-30. [43] 刘亚男,鲍丹丹,张四普,等.叶面喷施纳米硒对猕猴桃果实氨基酸含量及代谢组的影响[J].园艺学报,2025,52(6):1575-1587. [44] OJEDA-BARRIOS D L,MORALES I,JUÁREZ-MALDONADO A,et al. Chapter 35-Importance of nanofertilizers in fruit nutrition[J].Fruit crops,2020, 6: 497-508. [45] RAMÍREZ-ESTRADA C A,SÁNCHEZ E,SALCIDO-MARTÍNEZ A,et al. Foliar nano Zn-Mo and chlorine dioxide affects use efficiency and distribution of macronutrients in green bean plants[J]. Plant nano biology, 2025, 11: 100129. [46] 沈川,李夏,覃剑锋.纳米硒在植物营养获取和抵抗胁迫中的应用研究进展[J].核农学报,2024,38(10):2032-2045. [47] 马英辉,李利军,卢美欢,等.微生物纳米硒研究进展[J].中国酿造,2020,39(9):25-29. [48] 易青松. 小麦品种间镉吸收差异及铁和锌对镉吸收的调控研究[D].四川雅安:四川农业大学,2024. [49] 姜雅文,解文艳,何久兴,等.微生物种子包衣促进干旱条件下小麦种子萌发及幼苗生长[J].中国农业气象,2025,46(5):609-618. [50] 周平平. 玉米密植滴灌水肥精准调控高产栽培技术[J].河南农业,2025(11):75-76. [51] 盛彬,林志豪,武志健,等.纳米肥料在园艺作物栽培中的作用研究进展[J/OL].作物杂志,2025:1-10.[2025-06-16].https://link.cnki.net/urlid/11.1808.S.20240802.1243.006. [52] 齐明阳,王秀峰,冯文博,等.不同纳米材料在纳米肥料上的应用研究进展[J].肥料与健康,2023,50(2):1-5,23. |