湖北农业科学 ›› 2025, Vol. 64 ›› Issue (6): 185-189.doi: 10.14088/j.cnki.issn0439-8114.2025.06.031

• 信息工程 • 上一篇    下一篇

基于深度学习的盐碱地遥感影像反演模型构建

班若楠, 董峦   

  1. 新疆农业大学计算机与信息工程学院,乌鲁木齐 830052
  • 收稿日期:2024-11-25 出版日期:2025-06-25 发布日期:2025-07-18
  • 通讯作者: 董 峦(1982-),男,山西长治人,副教授,博士,主要从事计算机视觉研究,(电话)18999135445(电子信箱)dl@xjau.edu.cn。
  • 作者简介:班若楠(1998-),女,河南商丘人,在读硕士研究生,研究方向为机器学习,(电话)15937056649(电子信箱)brnn433@163.com
  • 基金资助:
    新疆维吾尔自治区重大科技专项(2023A02002)

Construction of a remote sensing image inversion model for saline-alkali land based on deep learning

BAN Ruo-nan, DONG Luan   

  1. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2024-11-25 Published:2025-06-25 Online:2025-07-18

摘要: 针对新疆阿克苏地区温宿县台兰河灌区盐碱地遥感影像反演问题,提出基于PointRend网络融合CoTAttention机制的图像分类模型。该模型以DeepLabV3为骨干网络,融入CoTAttention模块,提高网络的特征提取能力。为验证改进网络的分类效果,使用台兰河灌区的哨兵二号遥感影像进行试验。结果表明,PointRend模型的各项指标表现较好,像素准确率、平均交并比、F1分别为89%、88%、88%。与未融合CoTAttention机制的PointRend模型相比,改进PointRend模型的各项指标均有所提升,像素准确率、平均交并比、F1分别提高3、2、3个百分点。改进PointRend模型在目标分割任务中对细节的捕捉能力和边缘的精细化处理效果显著提升,提高了整体分类精度。

关键词: 深度学习, 盐碱地, 遥感影像, 反演模型, 注意力机制

Abstract: To address the inversion problem of remote sensing images of saline-alkali land in the Tailan River Irrigation District of Wensu County, Aksu Prefecture, Xinjiang, an image classification model based on the PointRend network integrated with the CoTAttention mechanism was proposed. The model used DeepLabV3 as the backbone network and incorporated the CoTAttention module to enhance the feature extraction capability of the network. To verify the classification performance of the improved network, experiments were conducted using Sentinel-2 remote sensing images from the Tailan River Irrigation District. The results showed that the PointRend model achieved good performance metrics, with pixel accuracy, mean intersection over union (MIoU), and F1 reaching 89%, 88%, and 88%, respectively. Compared with the original PointRend model without the CoTAttention mechanism, the improved PointRend model demonstrated enhanced metrics, with pixel accuracy, MIoU, and F1 increasing by 3, 2, and 3 percentage points, respectively. The improved PointRend model significantly enhanced the ability to capture fine details and refine edges in segmentation tasks, thereby improving overall classification accuracy.

Key words: deep learning, saline-alkali land, remote sensing images, inversion model, attention mechanism

中图分类号: