HUBEI AGRICULTURAL SCIENCES ›› 2021, Vol. 60 ›› Issue (22): 5-10.doi: 10.14088/j.cnki.issn0439-8114.2021.22.001
• Reviews • Next Articles
TAN Kun, ZHANG Li-lin
Received:
2020-07-08
Online:
2021-11-25
Published:
2021-12-10
CLC Number:
TAN Kun, ZHANG Li-lin. Research progress of virus like particles vaccine[J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(22): 5-10.
[1] KUSHNIR N, STREATFIELD S J, YUSIBOV V.Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development[J]. Vaccine, 2012,31(1):58-83. [2] JENNINGS G T, BACHMANN M F.The coming of age of virus-like particle vaccines[J]. Biol Chem, 2008,389(5):521-536. [3] LI T C, YAMAKAWA Y, SUZUKI K, et al.Expression and self-assembly of empty virus-like particles of hepatitis E virus[J]. Journal of Virology, 1997,71(10):7207-7213. [4] DING F X, WANG F, LU Y M, et al.Multiepitope peptide-loaded virus-like particles as a vaccine against hepatitis B virus-related hepatocellular carcinoma[J]. Hepatology, 2009,49(5):1492-1502. [5] LATHAM T, GALARZA J M.Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins[J]. Journal of Virology, 2001,75(13):6154-6165. [6] DE FILETTE M, FIERS W, MARTENS W, et al.Improved design and intranasal delivery of an M2e-based human influenza A vaccine[J]. Vaccine, 2006,24(44-46):6597-6601. [7] WU Z, CHEN K, YILDIZ I, et al.Development of viral nanoparticles for efficient intracellular delivery[J]. Nanoscale, 2012,4(11):3567-3576. [8] BACHMANN M F, JENNINGS G T.Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns[J]. Nat Rev Immunol, 2010,10(11):787-796. [9] BACHMANN M F, KALINKE U, ALTHAGE A, et al.The role of antibody concentration and avidity in antiviral protection[J]. Science, 1997,276(5321):2024-2027. [10] ADOLPH D W, BUTLER P J.Studies on the assembly of a spherical plant virus. III. Reassembly of infectious virus under mold conditions[J]. J Mol Biol, 1977,109(2):345-357. [11] TANG T, WENG T, JIA H, et al.Harnessing the layer-by-layer assembly technique to design biomaterials vaccines for immune modulation in translational applications[J]. Biomater Sci, 2019,7(3):715-732. [12] VALENZUELA P, MEDINA A, RUTTER W J, et al.Synthesis and assembly of hepatitis B virus surface antigen particles in yeast[J]. Nature, 1982,298(5872):347-350. [13] CORTES-PEREZ N G, KHARRAT P, LANGELLA P, et al. Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium[J]. BMC Res Notes, 2009,2:167. [14] WU T, LI S W, ZHANG J, et al.Hepatitis E vaccine development: A 14 year odyssey[J]. Hum Vaccin Immunother, 2012,8(6):823-827. [15] BROWN S D, FIEDLER J D, FINN M G.Assembly of hybrid bacteriophage Qβ virus-like particles[J]. Biochemistry, 2009,48(47):11155-11157. [16] HWANG D J, ROBERTS I M, WILSON T M.Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in [17] ZHAO Q, ALLEN M J, WANG Y, et al.Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles[J]. Nanomedicine, 2012,8(7):1182-1189. [18] LIU F, WU X, LI L, et al.Use of baculovirus expression system for generation of virus-like particles: Successes and challenges[J]. Protein Expr Purif, 2013,90(2):104-116. [19] AHMAD M, HIRZ M, PICHLER H, et al.Protein expression in [20] LAI H, CHEN Q.Bioprocessing of plant-derived virus-like particles of norwalk virus capsid protein under current good manufacture practice regulations[J]. Plant Cell Rep, 2012,31(3):573-584. [21] BOER E, STEINBORN G, KUNZE G, et al.Yeast expression platforms[J]. Appl Microbiol Biotechnol, 2007,77(3):513-523. [22] BAGHBAN R, FARAJNIA S, RAJABIBAZL M, et al.Yeast expression systems:Overview and recent advances[J]. Mol Biotechnol, 2019,61(5):365-384. [23] 李国坤, 高向东, 徐晨. 哺乳动物细胞表达系统研究进展[J]. 中国生物工程杂志, 2014,34(1):95-100. [24] SCOTTI N, RYBICKI E P.Virus-like particles produced in plants as potential vaccines[J]. Expert Rev Vaccines, 2013,12(2):211-224. [25] RYBICKI E P.Plant-made vaccines for humans and animals[J]. Plant Biotechnol J, 2010,8(5):620-637. [26] VICENTE T, MOTA J P, PEIXOTO C, et al.Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications:Current advances[J]. Biotechnol Adv, 2011,29(6):869-878. [27] VICENTE T, ROLDAO A, PEIXOTO C, et al.Large-scale production and purification of VLP-based vaccines[J]. J Invertebr Pathol, 2011,107:S42-S48. [28] SALAZAR O, ASENJO J A.Enzymatic lysis of microbial cells[J]. Biotechnol Lett, 2007,29(7):985-994. [29] CULL M, MCHENRY C S.Preparation of extracts from prokaryotes[J]. Methods Enzymol, 1990,182:147-153. [30] ZELTINS A.Construction and characterization of virus-like particles:A review[J]. Mol Biotechnol, 2013,53(1):92-107. [31] ZHAO Q, MODIS Y, HIGH K, et al.Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity[J]. Virol J, 2012,9:52. [32] MORENWEISER R.Downstream processing of viral vectors and vaccines[J]. Gene Ther, 2005,121:103-110. [33] SANCHEZ-RODRIGUEZ S P, MUNCH-ANGUIANO L, ECH-EVERRIA O, et al. Human parvovirus B19 virus-like particles:In vitro assembly and stability[J]. Biochimie, 2012,94(3):870-878. [34] ZHAO Q, LI S, YU H, et al.Virus-like particle-based human vaccines:Quality assessment based on structural and functional properties[J]. Trends Biotechnol, 2013,31(11):654-663. [35] DESCHUYTENEER M, ELOUAHABI A, PLAINCHAMP D, et al.Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in [36] MOHSEN M O, GOMES A C, CABRAL-MIRANDA G, et al.Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination[J]. J Control Release, 2017,251:92-100. [37] MANOLOVA V, FLACE A, BAUER M, et al.Nanoparticles target distinct dendritic cell populations according to their size[J]. Eur J Immunol, 2008,38(5):1404-1413. [38] FAKRUDDIN J M, LEMPICKI R A, GORELICK R J, et al.Noninfectious papilloma virus-like particles inhibit HIV-1 replication:Implications for immune control of HIV-1 infection by IL-27[J]. Blood, 2007,109(5):1841-1849. [39] RAGHUNANDAN R.Virus-like particles: innate immune stimulators[J]. Expert Rev Vaccines, 2011,10(4):409-411. [40] KELLER S A, BAUER M, MANOLOVA V, et al.Cutting edge:Limited specialization of dendritic cell subsets for MHC class II-associated presentation of viral particles[J]. J Immunol, 2010,184(1):26-29. [41] PONTERIO E, PETRIZZO A, DI BARTOLO I, et al.Pattern of activation of human antigen presenting cells by genotype GII.4 norovirus virus-like particles[J]. J Transl Med, 2013,11:127. [42] GRGACIC E V, ANDERSON D A.Virus-like particles:Passport to immune recognition[J]. Methods, 2006,40(1):60-65. [43] YAN D, WEI Y Q, GUO H C, et al.The application of virus-like particles as vaccines and biological vehicles[J]. Appl Microbiol Biotechnol, 2015,99(24):10415-10432. [44] JENNINGS G T, BACHMANN M F.The coming of age of virus-like particle vaccines[J]. Biol Chem, 2008,389(5):521-536. [45] CARRASCO Y R, BATISTA F D.B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node[J]. Immunity, 2007,27(1):160-171. [46] BACHMANN M F, ROHRER U H, KUNDIG T M, et al.The influence of antigen organization on B cell responsiveness[J]. Science, 1993,262(5138):1448-1451. [47] GOMES A C, FLACE A, SAUDAN P, et al.Adjusted particle size eliminates the need of linkage of antigen and adjuvants for appropriated t cell responses in virus-like particle-based vaccines[J]. Front Immunol, 2017,8:226. [48] KRIEG A M.Therapeutic potential of toll-like receptor 9 activation[J]. Nat Rev Drug Discov, 2006,5(6):471-484. [49] GOMES A C, MOHSEN M, BACHMANN M F.Harnessing nanoparticles for immunomodulation and vaccines[J]. Vaccines (Basel), 2017,5(1):6. [50] WU Z, CHEN K, YILDIZ I, et al.Development of viral nanoparticles for efficient intracellular delivery[J]. Nanoscale, 2012,4(11):3567-3576. [51] ROSTOVTSEV V V, GREEN L G, FOKIN V V, et al.A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes[J]. Angew Chem Int Ed Engl, 2002,41(14):2596-2599. [52] YIN Z, COMELLAS-ARAGONES M, CHOWDHURY S, et al.Boosting immunity to small tumor-associated carbohydrates with bacteriophage qbeta capsids[J]. ACS Chem Biol, 2013,8(6):1253-1262. [53] STEFANETTI G, SAUL A, MACLENNAN C A, et al.Click chemistry applied to the synthesis of salmonella typhimurium O-antigen glycoconjugate vaccine on solid phase with sugar recycling[J]. Bioconjug Chem, 2015,26(12):2507-2513. [54] WASHINGTON-HUGHES C L, CHENG Y, DUAN X, et al. In vivo virus-based macrofluorogenic probes target azide-labeled surface glycans in MCF-7 breast cancer cells[J]. Mol Pharm, 2013,10(1):43-50. [55] ALJABALI A A, SHUKLA S, LOMONOSSOFF G P, et al.CPMV-DOX delivers[J]. Mol Pharm, 2013,10(1):3-10. [56] GREGSON A L, OLIVEIRA G, OTHORO C, et al.Phase I trial of an alhydrogel adjuvanted hepatitis B core virus-like particle containing epitopes of [57] BALTABEKOVA A, SHAGYROVA Z, KAMZINA A S, et al.Split Core technology allows efficient production of virus-like particles presenting a receptor-contacting epitope of human IgE[J]. Mol Biotechnol, 2015,57(8):746-755. [58] WALKER A, SKAMEL C, NASSAL M.SplitCore:An exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure[J]. Sci Rep, 2011,1:5. [59] PEYRET H, GEHIN A, THUENEMANN E C, et al.Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins[J]. PLoS One, 2015,10(4):e120751. [60] BROWN A D, NAVES L, WANG X, et al.Carboxylate-directed in vivo assembly of virus-like nanorods and tubes for the display of functional peptides and residues[J]. Biomacromolecules, 2013,14(9):3123-3129. [61] GOLDINGER S M, DUMMER R, BAUMGAERTNER P, et al.Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8(+) T-cell responses in melanoma patients[J]. Eur J Immunol, 2012,42(11):3049-3061. [62] MOHSEN M O, ZHA L S, CABRAL-MIRANDA G.et al.Major findings and recent advances in virus-like particle (VLP)-based vaccines[J]. Seminars in immunology,2017,34:123-132. [63] SHOUVAL D, ROGGENDORF H, ROGGENDORF M.Enhanced immune response to hepatitis B vaccination through immunization with a Pre-S1/Pre-S2/S vaccine[J]. Medical microbiology and immunology, 2015,204(1):57-68. |
[1] | GUO Wei, WANG Min, YANG Hui-jun, MO Ai-jie, YUAN Yong-chao. Effects of monthly satiation degree on growth performance, body composition, immunity and water quality of juveniles grass carp [J]. HUBEI AGRICULTURAL SCIENCES, 2023, 62(11): 106-112. |
[2] | FAN Kai-xuan, ZHONG Yong-ke. Effect of modified coconut shell activated carbon on paraquat adsorption capacity [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(4): 56-60. |
[3] | FAN Kai-xuan, ZHANG Juan, ZHOU Xun, LIU Yu-yao, ZHONG Yong-ke. Modification of coal activated carbon removal of paraquat to explore [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(3): 65-69. |
[4] | FAN Kai-xuan, JIANG Shuai, LI Meng-zhi, Li Tian-tian, HAO Pan-pan, YAN Xiang, YANG Chun-jin. Effect of surface acid groups of activated carbon on paraquat adsorption [J]. HUBEI AGRICULTURAL SCIENCES, 2022, 61(21): 67-72. |
[5] | XIE Miao, QI Xiao-ni, WU Yang-yang, ZHANG Xin, DU Xiu-ju. Research progress on chemical modification of polysaccharides and its structure identification [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(3): 11-17. |
[6] | WANG Dan, CUI Wei-tao, WANG Chun, KUANG Shi-chang, XU Qing-rong, XIAO Yun-cai, LI Zi-li, ZHOU Zu-tao. Study on the application of fermented Chinese medicine preparation to replace antibiotics in broiler diet [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(24): 164-168. |
[7] | WU Jia-qi, HUANG Jin-hai. Mechanisms of glycosylation in enveloped virus infection [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(15): 11-15. |
[8] | MENG Wei, ZHANG Lei, HUANG Jin-hai. Progress in research on influenza A virus universal vaccines based on HA [J]. HUBEI AGRICULTURAL SCIENCES, 2021, 60(14): 10-16. |
[9] | YUE Shi-chao, CAO Ya-qian. Zyxin protein function in cells and its research progress [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(4): 13-17. |
[10] | XIANG Min, XIA Yu, WANG Ding-fa, SHAO Zhi-yong, LI Zhong-xin, RUAN Zheng, ZHANG Si-hua, LIU Kai-wu, WAN Xue-ji, LI Xin-yu, SHI Yong-mei, CHENG Lei. The latest research progress on porcine pseudorabies [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(23): 20-23. |
[11] | MENG Shu-yu, MERWERT·Adalhan, XIAYIDA·Nurmamate, ADELE·Suleiman, MULLIDER·Hederbai, CHEN Chun-li. Advances in extraction,purification,chemical modification and antioxidant activity of polysaccharides [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(2): 5-8. |
[12] | LI Jia-kai, GUO Kang-kang, LIU Li-na, WEN Guo-yuan, LUO Qing-ping, LI Zi-li, DONG Shi-shan, SHAO Hua-bin, ZHAO Zong-zheng. Antibody levels of H5, H7 and H9 subtypes of avian influenza virus of broilers and layers [J]. HUBEI AGRICULTURAL SCIENCES, 2020, 59(11): 104-106. |
[13] | ZHENG De-lun, ZHANG Rui-long, CHEN Jian-qiao, WANG Cheng-wen, CHEN Xue-wu, ZHANG Cai-yun. Electrochemical analysis performance study of graphene functional modified materials [J]. HUBEI AGRICULTURAL SCIENCES, 2019, 58(7): 5-6. |
[14] | WANG Hong-cai, WANG Zui, LUO Ling, WANG Hong-lin, LU Qin, ZHANG Rong-rong, ZHNAG Teng-fei, WEN Guo-yuan, LUO Qing-ping. Isolation and identification of attenuated vaccine ALV from Hubei local chicken breeding farm [J]. HUBEI AGRICULTURAL SCIENCES, 2019, 58(24): 167-169. |
[15] | ZHANG Ling, YANG Jian-yun, ZHU Long, TIAN Meng-yu, ZHANG Wei, TANG Dan-yu, GAO Rui, LI Zhen-jie, ZHAO Ying-liang, WEI Ke-yi. Preparation of tobacco stem based modified porous materials and application in cigarette smoke [J]. HUBEI AGRICULTURAL SCIENCES, 2019, 58(23): 168-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||